Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122635, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-36996518

ABSTRACT

Quantum chemical calculations have been carried out to elucidate the electronic structure as well as to draw structure-property relationships for a series of ferrocenyl hetaryl ketones by means of simulated NMR, IR and UV-vis spectra. In this series, the list of hetaryl groups included furan-2-yl, thiophen-2-yl, selenophen-2-yl, 1H-pyrrol-2-yl and N-methylpyrrol-2-yl. Density functional theory was employed to determine the ground-state properties of the five ketones while their excited-state properties were modeled using a broad range of theoretical methods, namely from time-dependent density functional theory to multiconfigurational and multireference ab initio approaches. The patterns in the 13C and 17O chemical shifts of the carbonyl group were explained by the geometrical twist of hetaryl rings and by the electronic parameters corresponding to π-bonds conjugation and group hardness. Furthermore, the corresponding 13C and 17O shielding constants were analyzed in terms of both their dia/paramagnetic and Lewis/non-Lewis contributions within the framework of natural chemical shielding theory. The pattern in the vibrational frequency of the carbonyl bond was connected with changes in its bond length and bond order. It was established that the electronic absorption spectra of the studied ketones are largely characterized by low-intensity d â†’ π* transitions in the visible region and the dominant high-intensity π â†’ π* transition in the UV region. Finally, the theoretical methods best suited for modeling the excited-state properties of such ketones were designated.

2.
ACS Energy Lett ; 7(10): 3197-3203, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277134

ABSTRACT

Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin-based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin-iodine network that forms perovskite. However, while dimethyl sulfoxide seems the best solution to control the crystallization, it oxidizes tin during processing. This work demonstrates that 4-(tert-butyl) pyridine can replace dimethyl sulfoxide to control the crystallization without oxidizing tin. We show that tin perovskite films deposited from pyridine have a 1 order of magnitude lower defect density, which promotes charge mobility and photovoltaic performance.

4.
Ambio ; 51(9): 2043-2057, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35347638

ABSTRACT

Policies and strategies for tree management and protection on a national, regional, and local level have not sufficiently considered differences between rural and urban areas. We used expert knowledge to compare rural and urban areas in a case study evaluating the relative importance of ecosystem services (ES) in policy development. The Analytic Hierarchy Process (AHP) and focus group discussions were used to rank 17 ES, representing four classes of services: provisioning, regulating, habitat, and cultural. The results indicated that effective protection strategies, beyond simply increasing general tree cover, should consider specific benefits trees provide to local communities. We discuss the role of objective prioritization of ES delivered by trees in urban and rural areas and their consequences for decision-making processes.


Subject(s)
Ecosystem , Trees , Conservation of Natural Resources/methods
5.
J Comput Chem ; 42(29): 2103-2115, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34420225

ABSTRACT

The metal-ligand bond in a set of 60 σ-complexes has been investigated by electronic structure computations. These σ-complexes originate from the unique combination of 12 stannylenes (SnX2 ) with five azabenzene ligands (pyridine, pyrazine, pyrimidine, pyridazine, and s-triazine), where the nitrogen center of the ligand acts as σ-donor and the tin(II) center as σ-acceptor in a 1:1 fashion. The Sn ← N bond and the total interaction between the stannylene and azabenzene moieties of the σ-complexes are characterized in depth to relate the Sn ← N strength to the substitution pattern at SnX2 and to the number and the positioning of N atoms in the azabenzenes. Such X substituents as (iso)cyano and trifluoromethyl groups enhance the interaction strength, while the presence of alkyl, phenyl, and silyl substituents in SnX2 diminishes the stability of σ-complexes. A gradual weakening of the total interaction is associated with the growing number of N atoms in the azabenzenes, while the N-atom positioning in pyridazine is particularly effective in strengthening the interaction with stannylenes. Variations in the Sn ← N bond strength usually follow those in the total interaction between the moieties but the interacting quantum atoms picture of Sn ← N reveals certain intriguing exceptions.

6.
Front Psychol ; 12: 639830, 2021.
Article in English | MEDLINE | ID: mdl-34149523

ABSTRACT

Few studies have investigated relational environmental views of different stakeholder groups. In this study, we investigated how residents of rural and urban municipalities view the management of trees (who should decide about trees' removal - the landowner, or the municipality), which provides a various range of ecosystem services and the extent that place attachment as a relational variable affects these views. The analysis was based on 231 questionnaires conducted in two Polish municipalities: one rural (Nysa) and one urban (Racibórz). Data were analyzed using statistical methods including logistic regression models for analyzing factors impacting the main research question. Our investigation showed that both place attachment involving public good sentiments and the perception of ecosystem services provided by trees, that are related to private interests significantly impacted views on tree management. In rural areas the opinion, that the municipality should decide to remove trees was positively associated with a place attachment. For residents of urban areas (Racibórz), the strength of place attachment was not related to the perception of tree removal, but it was related to the perception of trees' cultural benefits. We argue that considering psychological variables related to the tree management issues could help avoid conflicts.

7.
Chemistry ; 26(50): 11412-11416, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32212185

ABSTRACT

Reactions of α,ß-unsaturated aromatic thioketones 1 (thiochalcones) with Fe3 (CO)12 leading to η4 -1-thia-1,3-diene iron tricarbonyl complexes 2, [FeFe] hydrogenase mimics 3, and the thiopyrane adduct 4 are described. Obtained products have been characterized by X-ray crystallography and by computational methods. Completely regio- and diastereoselective formation of the five-membered ring system in products 3, containing four stereogenic centers, can be explained by an unprecedented, stepwise (3+2)-cycloaddition of two thiochalcone molecules mediated by Fe3 (CO)12 . Quantum chemical calculations aimed at elucidation of the reaction mechanism, suggest that the formal (3+2)-cycloaddition proceeds via sequential intramolecular radical transfer events upon homolytic cleavage of one carbon-sulfur bond leading to a diradical intermediate.

8.
Molecules ; 24(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683693

ABSTRACT

Ferrocenyl-functionalized thioketones have recently been recognized as useful building blocks for sulfur-containing compounds with potential applications in materials chemistry. This work is devoted to a single representative of such thioketones, namely diferrocenyl thioketone (Fc2CS), whose structure has been determined here for the first time. Both X-ray crystallography and a wide variety of quantum-chemical methods were used to explore the structure of Fc2CS. In addition to the X-ray structure determination, intermolecular interactions occurring in the crystal structure of Fc2CS were examined in detail by quantum-chemical methods. These methods were also an invaluable tool in studying the molecular structure of Fc2CS, from the gas phase to solutions and to its crystal. Intramolecular interactions governing the conformational behavior of an isolated Fc2CS molecule were deduced from quantum-chemical analyses carried out in orbital space and real space. Our experimental and theoretical results indicate that the main structural features of an isolated Fc2CS molecule in its lowest-energy geometry are retained both upon solvation and in the crystal. The tilt of ferrocenyl groups is only slightly affected by crystal packing forces that are dominated by dispersion. Nonetheless, a network of intermolecular interactions, such as H···H, C···H and S···H, was detected in the Fc2CS crystal but each of them is fairly weak.


Subject(s)
Crystallography, X-Ray , Ferrous Compounds/chemistry , Thiones/chemistry , Models, Molecular , Molecular Conformation , Solvents/chemistry
9.
Materials (Basel) ; 12(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484359

ABSTRACT

Diferrocenyl thioketone reacts smoothly with (bisphosphane)Pt(0) complexes in toluene solution at room temperature yielding 1:1 adducts identified as ferrocenyl (Fc) functionalized platinathiiranes. Their structures were unambiguously confirmed by means of spectroscopic methods as well as by X-ray diffraction analysis. A unique, ferrocene-rich platinathiirane, bearing three Fc-units, was prepared starting with [bis(diphenylphosphino)ferrocene] Pt(0(η2-norbornene). For comparison, a similar platinathiirane with one Fc-unit was obtained from the reaction of the latter complex with thiobenzophenone. Quantum-chemical calculations were carried out to describe the bonding pattern and frontier molecular orbitals of the ferrocene-rich platinathiirane complexes. These calculations confirmed that the C=S bond loses its formally double-bond character upon complexation (bisphosphane)Pt(0). Cyclic voltammetry measurements were performed to characterize the obtained platinathiiranes in CH2Cl2 solutions. For comparison, the cyclic voltammogram for diferrocenyl thioketoneas a mixed-valent (FeII-FeIII) compound was also recorded and analyzed. The results point out to a diffusion controlled electrode process in case of differocenyl thioketone and mixed diffusion and adsorption controlled electrode process in the case of the studied platinathiiranes.

10.
Monatsh Chem ; 149(6): 1009-1015, 2018.
Article in English | MEDLINE | ID: mdl-29887646

ABSTRACT

ABSTRACT: Theoretical quantum mechanical calculations have been carried out to establish the effect of surface vacancies on the adsorption of Pd and Pb atoms on the defective MgO(100) surface. The investigated defects included neutral, singly and doubly charged O and Mg vacancies on the (100) surface of MgO. These vacancies played the role of Fsn+ and Vsn- (n = 0, 1, 2) adsorption centers for a single Pd or Pb atom. From the results of calculations, it is clear that the Pd- and Pb-atom adsorption at the Fsn+ and Vsn- centers shows different characteristics than at the regular O2- and Mg2+ centers. Drastic changes in geometric, energetic, and electronic parameters are evident in Pd/Vsn- and Pb/Vsn-. The effect of Fs0 and Fs+, which in practice are the most important vacancies, is smaller, yet the adsorption of Pd and Pb at these centers is more energetically favorable than at the regular O2- center. Of the two metals studied, the atom of Pd is bound by the Fs0 and Fs+ centers with higher adsorption energies.

11.
J Mol Model ; 23(9): 268, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28825194

ABSTRACT

In this work several molecular properties of symmetrically disubstituted formaldehyde and thioformaldehyde have been studied using a quantum chemistry approach based on density functional theory. Five-membered heteroaromatic rings containing a single group 16 heteroatom were taken into account as the substituents (i.e., furan-2-yl, thiophen-2-yl, selenophen-2-yl, tellurophen-2-yl, and the experimentally as yet unknown polonophen-2-yl). For the resulting ten formaldehyde and thioformaldehyde derivatives, the geometry, energetics, frontier molecular orbitals, dipole moment and polarizability of their molecules were examined in order to establish the effect of ring heteroatom on these properties. Furthermore, these properties were also determined for the molecules in three solvents of low polarity (benzene, chloroform, and dichloromethane) in order to expand our study to include solvent effects. The dipole moment and polarizability of the investigated molecules show regular variations when the ring heteroatom descends through group 16 and the solvent polarity grows. The heteroatom and/or solvent effects on the part of the studied properties are, however, more complex. An attempt is made to rationalize the observed variations in the molecular properties. The conformational behavior of the investigated molecules was also explored and the conformationally weighted values of dipole moment and polarizability are presented. Graphical abstract Some molecular properties of symmetrically disubstituted formaldehyde and thioformaldehyde.

12.
J Mol Model ; 22(9): 208, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27525639

ABSTRACT

For a series of five model complexes composed of a singlet SnX2 molecule (X = H, F, Cl, Br, I) and a benzene molecule, the first-principles calculations of their energetics and the analysis of their electron density topology have been performed. The CCSD(T)/CBS interaction energy between SnX2 and C6H6 fall into the range between -10.0 and -11.2 kcal/mol, which indicates that the complexes are rather weakly bound. The relevant role of electrostatic and dispersion contributions to the interaction energy between SnX2 and C6H6 is highlighted in the results obtained from the symmetry-adapted perturbation theory (SAPT). The electron density topological analysis has been carried out using the quantum theory of atoms in molecules (QTAIM) and the noncovalent interactions (NCI) visualization index. Both QTAIM and NCI prove the closed-shell, noncovalent and attractive character of the interaction. A very small charge transfer from C6H6 to SnX2 has been detected. The formation of the five complexes is accompanied by the electron density deformations that are spatially restricted mostly to the region around the Sn atom and its adjacent C atom. The results presented in this work shed some light on the nature of the interactions associated with crystalline structural motifs involving low-valent tin complexed with neutral aryl rings.

13.
J Mol Model ; 21(3): 41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25677452

ABSTRACT

The performances of Møller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT) have been assessed for the purposes of investigating the interaction between stannylenes and aromatic molecules. The complexes between SnX2 (where X = H, F, Cl, Br, and I) and benzene or pyridine are considered. Structural and energetic properties of such complexes are calculated using six MP2-type and 14 DFT methods. The assessment of the above-mentioned methods is based on the comparison of the structures and interaction energies predicted by these methods with reference computational data. A very detailed analysis of the performances of the MP2-type and DFT methods is carried out for two complexes, namely SnH2-benzene and SnH2-pyridine. Of the MP2-type methods, the reference structure of SnH2-benzene is reproduced best by SOS-MP2, whereas SCS-MP2 is capable of mimicking the reference structure of SnH2-pyridine with the greatest accuracy. The latter method performs best in predicting the interaction energy between SnH2 and benzene or pyridine. Among the DFT methods, ωB97X provides the structures and interaction energies of the SnH2-benzene and SnH2-pyridine complexes with good accuracy. However, this density functional is not as effective in reproducing the reference data for the two complexes as the best performing MP2-type methods. Next, the DFT methods are evaluated using the full test set of SnX2-benzene and SnX2-pyridine complexes. It is found that the range-separated hybrid or dispersion-corrected density functionals should be used for describing the interaction in such complexes with reasonable accuracy.

14.
J Phys Chem A ; 116(34): 8731-6, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22867265

ABSTRACT

The application of symmetry-adapted perturbation theory (SAPT) to small ionic systems was investigated in the context of the accuracy of calculated interaction energies for alkali halides. Two forms of alkali halides were considered: ion pairs M(+)X(-) (M = Li, Na, K, Rb, and X = F, Cl, Br, I) and dimers (MX)(2). The influence of the order of energy correction terms included in SAPT and the effect of the so-called hybrid approach to SAPT on the accuracy of the calculated energies (such as the interaction energies in the ion pairs and the binding energies in the dimers with respect to two free monomers) were studied. The effects of the size of basis sets, combined with SAPT, on the accuracy were also established.


Subject(s)
Dimerization , Halogens/chemistry , Metals, Alkali/chemistry , Quantum Theory , Thermodynamics
15.
J Phys Chem A ; 116(1): 452-9, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22175651

ABSTRACT

Charge-assisted hydrogen bonds (CAHBs) of N-H···Cl, N-H···Br, and P-H···Cl type were investigated using advanced computational approach (MP2/aug-cc-pVTZ level of theory). The properties of electron density function defined in the framework of Quantum Theory of Atoms in Molecules (QTAIM) were estimated as a function of distance in H-bridges. Additionally, the interaction energy decomposition was performed for H-bonded complexes with different H-bond lengths using the Symmetry-Adapted Perturbation Theory (SAPT). In this way both QTAIM parameters and SAPT energy components could be expressed as a function of the same variable, that is, the distance in H-bridge. A detailed analysis of the changes in QTAIM and SAPT parameters due to the changes in H···A distance revealed that, over some ranges of H···A distances, electrostatic, inductive and dispersive components of the SAPT interaction energy show a linear correlation with the value of the electron density at H-BCP ρ(BCP). The linear relation between the induction component, E(ind), and ρ(BCP) confirms numerically the intuitive expectation that the ρ(BCP) reflects directly the effects connected with the sharing of electron density between interacting centers. These conclusions are important in view of charge density studies performed for crystals in which the distance between atoms results not only from effects connected with the interaction between atomic centers directly involved in bonding, but also from packing effects which may strongly influence the length of the H-bond.


Subject(s)
Hydrogen/chemistry , Quantum Theory , Electrons , Hydrogen Bonding , Kinetics , Static Electricity , Thermodynamics
16.
Comb Chem High Throughput Screen ; 12(7): 704-11, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19531015

ABSTRACT

The synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)-camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1-phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl(2)*4H(2)O or ZnCl(2) to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature.


Subject(s)
Camphor/analogs & derivatives , Camphor/chemistry , Organotin Compounds/chemistry , Camphor/chemical synthesis , Ketones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Organotin Compounds/chemical synthesis , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...