Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 54(8): 1135-1154, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35286462

ABSTRACT

GnRH-I and GnIH are the key neuropeptides that regulate the hypothalamic-pituitary-gonadal axis in mammals during aging. Polyamines are important aliphatic amines that are expressed in the brain and show variation with aging. The present study demonstrates evidence of variation in the level of expression of polyamines, GnRH-I and GnIH in the hypothalamus of female mice during aging. The study also suggests regulatory effects of polyamines over expression of the hypothalamic GnRH-I. The study shows a significant positive correlation between polyamines, its associated factors and GnRH-I along with significant negative correlation between polyamines, its associated factors and GnIH. This is the first study to report the effect of polyamines along with lactate or TNF-α or both on GnRH-I expression in GT1-7 cell line. TNF-α and lactate significantly decreased hypothalamic GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Polyamines (putrescine and agmatine) in contrast, significantly increased GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Also, polyamines increased GnRH-I mRNA expression when treated in presence of TNF-α or lactate thereby suggesting its neuro-protective role. This study also found 3809 differentially expressed genes through RNA-seq done between the hypothalamic GT1-7 cells treated with putrescine only versus TNF-α and putrescine. The present study suggests for the first time that putrescine treatment to TNFα-primed GT1-7 cells upregulates GnRH-I expression via regulation of several pathways such as calcium ion pathway, estrogen signaling, clock genes as well as regulating other metabolic process like neuronal differentiation and neurulation.


Subject(s)
Polyamines , Putrescine , Aging , Animals , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Lactates/metabolism , Mice , Polyamines/metabolism , Putrescine/metabolism , RNA, Messenger/metabolism , Rodentia/genetics , Rodentia/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Reprod Sci ; 29(9): 2546-2564, 2022 09.
Article in English | MEDLINE | ID: mdl-35138586

ABSTRACT

GnRH-I produced by hypothalamic neurosecretory cells is considered a master regulator of mammalian reproduction. Although GnRH-I transcription is well studied, the effect of ageing on transcriptional regulation of GnRH-I has not yet been explored. Here, we elucidate the effects of ageing on the metabolic environment like lactate level and TNF-α and how these affect GnRH-I transcription. Using pathway analysis of transcriptomic data, we found that lactate is upregulated in ageing astrocytes due to the downregulation of cellular respiration pathways possibly resulting in greater pyruvate concentration for lactate production. This lactate could then be shuttled into neurons where it would affect GnRH-I transcription. We showed that supra-physiological level of lactate in young mouse brain can mimic metabolic disturbances in the old brain and cause downregulation in GnRH-I transcription at a young age. In particular, we found upregulation of GnRH-I repressors in the young brain treated with high levels of lactate similar to old brain. Hence, this confirmed that aged metabolic environment can affect GnRH-I transcription even in the young brain. Further downstream analysis using the TRUST database showed NF-Kb signalling which lies downstream of both lactate and TNF-α as being capable of upregulating GnRH-I repressors. Since NF-Kb signalling has been shown in our study as well as others to be induced by TNF-α during ageing, it is likely that GnRH-I transcriptional regulation is mediated through these pathways. Thus, we formed a model for explaining the downregulation of GnRH-I transcription during ageing through differential expression of its TFs in an aged metabolic environment.


Subject(s)
Astrocytes , NF-kappa B , Animals , Astrocytes/metabolism , Brain/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Lactic Acid/metabolism , Mammals/metabolism , Mice , NF-kappa B/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Dalton Trans ; 49(9): 2947-2965, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32073070

ABSTRACT

The interaction of two binuclear mixed ligand Cu(ii) complexes [Cu(o-phen)LCu(OAc)] (1) and [Cu(o-phen)LCu(o-phen)](OAc) (2) (H3L = o-HOC6H4C(H)[double bond, length as m-dash]N-NH-C(OH)[double bond, length as m-dash]N-N[double bond, length as m-dash]C(H)-C6H4OH-o) and a new mononuclear Zn(ii) complex [Zn(HL)(o-phen)(H2O)](OAc)·H2O (3) (H2L = o-HOC6H4-C(H)[double bond, length as m-dash]N-NH-C([double bond, length as m-dash]O)-NH-N[double bond, length as m-dash]C(H)-C6H4OH-o, o-phen = 1,10-phenanthroline, and OAc = CH3COO-) with human serum albumin (HSA) was studied using fluorescence quenching, synchronous and 3D fluorescence measurements and UV-vis spectroscopy. 3D fluorescence studies showed that the HSA structure was altered at the secondary and tertiary levels upon binding with the complexes. This was further supported by the electronic absorption spectral studies of HSA in the absence and presence of the compounds. The average binding distance (r) between HSA and the complexes was obtained by Förster's resonance energy transfer theory. Complex 3 was structurally characterized by X-ray crystallography. Molecular docking studies indicated that all three complexes primarily bind to HSA in subdomain IIA with amino acid residues such as Arg218 and Lys199 which are located at the entrance of Sudlow's site I. The in vitro cytotoxicities of complexes 1-3 against HeLa cells showed promising anticancer activity (IC50 = 3.5, 3.9 and 16.9 µM for 1, 2 and 3, respectively). Live cell time lapse imaging for 1 was done to capture the dynamic behavior of the cells upon treatment with the complex. Cell cycle analysis by flow cytometry with HeLa cells indicated that 1 and 2 induced cell cycle arrest in the G2/M phase while 3 induced arrest in the G0/G1 phase leading to cell death. Compounds 1 and 2 but not 3 induced apoptosis through the mitochondrial pathway as suggested from the relative p53, caspase3 and bcl2 mRNA levels measured by real-time quantitative PCR analysis.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Molecular Docking Simulation , Serum Albumin, Human/chemistry , Zinc/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ligands , Molecular Structure , Protein Binding , Tumor Cells, Cultured , Zinc/chemistry
4.
Biochem Biophys Rep ; 18: 100629, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30993216

ABSTRACT

Push-pull dibenzodioxins and phenazines having 'anthracene-like' planar structures and good charge transfer character had been previously synthesised in our laboratory. The dibenzodioxins had earlier proven their anti-proliferative nature against HeLa tumor cell lines. Since phenazines are structural analogues of the former, these molecules were evaluated in course of the current study for their cytotoxic action against HeLa cell lines and they exhibited strong anti-tumor activity. This behavior could be related to their good DNA binding property. The DNA binding modes of molecules 1-4 (Fig. 1) were evaluated using various experimental techniques and they interacted with DNA in a non-covalently by both intercalative as well as groove binding mechanisms. Molecule 1 follows predominantly intercalative binding mode whereas molecules 2 and 3 have nearly equal and opposite preferences for both groove binding and intercalative modes. For molecule 4, groove binding is preferred mode of binding to DNA. A rationale for such differential binding behaviour is provided based on the subtle structural differences in our synthesised dibenzodioxins and phenazines. Elucidation of the mode of a molecule-DNA-binding event is relevant for understanding the mechanism of action of these molecules and will help promote further research into designing better DNA targeting small molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...