Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 11(4): 581-588, 2019 08.
Article in English | MEDLINE | ID: mdl-31102321

ABSTRACT

The Roseobacter group is a widespread marine bacterial group, of which some species produce the broad-spectrum antibiotic tropodithietic acid (TDA). A mode of action for TDA has previously been proposed in Escherichia coli, but little is known about its effect on non-producing marine bacteria at in situ concentrations. The purpose of this study was to investigate how a sub-lethal level of TDA affects Vibrio vulnificus at different time points (30 and 60 min) using a transcriptomic approach. Exposure to TDA for as little as 30 min resulted in the differential expression of genes associated with cell regeneration, including the up-regulation of those involved in biogenesis of the cell envelope. Defence mechanisms including oxidative stress defence proteins and iron uptake systems were also up-regulated in response to TDA, while motility-related genes were down-regulated. Gene expression data and scanning electron microscopy imaging revealed a switch to a biofilm phenotype in the presence of TDA. Our study shows that a low concentration of this antibiotic triggers a defence response to reactive oxygen species and iron depletion in V. vulnificus, which indicates that the mode of action of TDA is likely more complex in this bacterium than what is known for E. coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gene Expression/drug effects , Tropolone/analogs & derivatives , Vibrio vulnificus/drug effects , Bacterial Proteins/genetics , Biofilms/growth & development , Biological Transport/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Gene Expression Profiling , Iron/metabolism , Oxidative Stress/genetics , Tropolone/pharmacology , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism , Vibrio vulnificus/ultrastructure
2.
Artif Cells Nanomed Biotechnol ; 46(sup3): S886-S899, 2018.
Article in English | MEDLINE | ID: mdl-30422688

ABSTRACT

Bacterial biofilm represents a major problem in medicine. They colonize and damage medical devices and implants and, in many cases, foster development of multidrug-resistant microorganisms. Biofilm development starts by bacterial attachment to the surface and the production of extracellular polymeric substances (EPS). The EPS forms a structural scaffold for dividing bacterial cells. The EPS layers also play a protective role, preventing the access of antibiotics to biofilm-associated microorganisms. The aim of this work was to investigate the production nanoparticles that could be used to inhibit biofilm formation. The applied production procedure from rhizome extracts of Rhodiola rosea is simple and environmentally friendly, as it requires no additional reducing, stabilizing and capping agents. The produced nanoparticles were stable and crystalline in nature with an average diameter of 13-17 nm for gold nanoparticles (AuNPs) and 15-30 nm for silver nanoparticles (AgNPs). Inductively coupled plasma mass spectrometry analysis revealed the concentration of synthesized nanoparticles as 3.3 and 5.3 mg/ml for AuNPs and AgNPs, respectively. Fourier-transform infrared spectroscopy detected the presence of flavonoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the Au and Ag salts to nanoparticles and further stabilizing them. Furthermore, we explored the AgNPs for inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. AgNPs exhibited minimum inhibitory concentrations of 50 and 100 µg/ml, against P. aeruginosa and E. coli, respectively. The respective minimum bactericidal concentrations were 100 and 200 µg/ml. These results suggest that using the rhizome extracts of the medicinal plant R. rosea represents a viable route for green production of nanoparticles with anti-biofilm effects.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Gold , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Pseudomonas aeruginosa/physiology , Rhizome/chemistry , Rhodiola/chemistry , Silver , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Gold/chemistry , Gold/pharmacology , Silver/chemistry , Silver/pharmacology
3.
Int J Nanomedicine ; 13: 3571-3591, 2018.
Article in English | MEDLINE | ID: mdl-29950836

ABSTRACT

BACKGROUND: Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). METHODS AND RESULTS: The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV-visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. CONCLUSION: The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20-40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.


Subject(s)
Biofilms , Cannabis/chemistry , Gold/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Dynamic Light Scattering , Escherichia coli/drug effects , Escherichia coli/physiology , Gold/pharmacology , Humans , Ions , Kinetics , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Plant Extracts/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Silver/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
4.
Int J Syst Evol Microbiol ; 67(11): 4559-4564, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28984543

ABSTRACT

Four heterotrophic, antimicrobial, motile, marine bacterial strains, 27-4T, 8-1, M6-4.2 and S26, were isolated from aquaculture units in Spain, Denmark and Greece. All four strains produced the antibiotic compound tropodithietic acid, which is a key molecule in their antagonism against fish pathogenic bacteria. Cells of the strains were Gram-reaction-negative, rod-shaped and formed star-shaped aggregates in liquid culture and brown-coloured colonies on marine agar. The predominant cellular fatty acids were C18 : 1ω7c, C16 : 0, C11 methyl C18 : 1ω7c and C16 : 0 2-OH, and the polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an aminolipid, a phospholipid and an unidentified lipid. The strains grew optimally at 31-33 °C. Growth was observed at a salt concentration between 0.5 and 5-6 % NaCl with an optimum at 2-3 %. The pH range for growth of the strains was from pH 6 to 8-8.5 with an optimum at pH 7. Based on 16S rRNA gene sequence analysis, the strains are affiliated with the genus Phaeobacter. The genome sequences of the strains have a DNA G+C content of 60.1 % and share an average nucleotide identity (ANI) of more than 95 %. The four strains are distinct from the type strains of the closely related species Phaeobactergallaeciensis and Phaeobacterinhibens based on an ANI of 90.5-91.7 and 89.6-90.4 %, respectively, and an in silico DNA-DNA hybridization relatedness of 43.9-46.9 and 39.8-41.9 %, respectively. On the basis of phylogenetic analyses as well as phenotypic and chemotaxonomic properties, the isolates are considered to represent a novel species, for which the name Phaeobacter piscinae sp. nov. is proposed. The type strain is 27-4T (=DSM 103509T=LMG 29708T).


Subject(s)
Aquaculture , Phylogeny , Rhodobacteraceae/classification , Seawater/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Denmark , Fatty Acids/chemistry , Fishes , Greece , Heterotrophic Processes , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Sequence Analysis, DNA , Spain , Tropolone/analogs & derivatives , Tropolone/chemistry
5.
J Struct Biol ; 199(1): 27-38, 2017 07.
Article in English | MEDLINE | ID: mdl-28527712

ABSTRACT

Protein amyloid fibrillation is obtaining much focus because it is connected with amyloid-related human diseases such as Alzheimer's disease, diabetes mellitus type 2, or Parkinson's disease. The influence of metal ions on the fibrillation process and whether it is implemented in the amyloid fibrils has been debated for some years. We have therefore investigated the influence and binding geometry of zinc in fibrillated insulin using extended X-ray absorption fine-structure and X-ray absorption near-edge structure spectroscopy. The results were validated with fibre diffraction, Transmission Electron Microscopy and Thioflavin T fluorescence measurements. It is well-known that Zn2+ ions coordinate and stabilize the hexameric forms of insulin. However, this study is the first to show that zinc indeed binds to the insulin fibrils. Furthermore, zinc influences the kinetics and the morphology of the fibrils. It also shows that zinc coordinates to histidine residues in an environment, which is similar to the coordination seen in the insulin R6 hexamers, where three histidine residues and a chloride ion is coordinating the zinc.


Subject(s)
Amyloid/chemistry , Histidine/chemistry , Insulin/chemistry , Zinc/chemistry , Humans , Kinetics , Microscopy, Electron, Transmission , Protein Binding , X-Ray Absorption Spectroscopy
6.
Sci Rep ; 7: 42332, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195195

ABSTRACT

Peptoids are an alternative approach to antimicrobial peptides that offer higher stability towards enzymatic degradation. It is essential when developing new types of peptoids, that mimic the function of antimicrobial peptides, to understand their mechanism of action. Few studies on the specific mechanism of action of antimicrobial peptoids have been described in the literature, despite the plethora of studies on the mode of action of antimicrobial peptides. Here, we investigate the mechanism of action of two short cationic peptoids, rich in lysine and tryptophan side chain functionalities. We demonstrate that both peptoids are able to cause loss of viability in E. coli susceptible cells at their MIC (16-32 µg/ml) concentrations. Dye leakage assays demonstrate slow and low membrane permeabilization for peptoid 1, that is still higher for lipid compositions mimicking bacterial membranes than lipid compositions containing Cholesterol. At concentrations of 4 × MIC (64-128 µg/ml), pore formation, leakage of cytoplasmic content and filamentation were the most commonly observed morphological changes seen by SEM in E. coli treated with both peptoids. Flow cytometry data supports the increase of cell size as observed in the quantification analysis from the SEM images and suggests overall decrease of DNA per cell mass over time.


Subject(s)
Cell Membrane/metabolism , Escherichia coli/growth & development , Peptoids/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , DNA, Bacterial/metabolism , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Fluoresceins/chemistry , Fluoresceins/metabolism , Fluorescent Dyes/chemistry , Kinetics , Liposomes/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Peptoids/chemistry
7.
Res Microbiol ; 167(2): 72-82, 2016.
Article in English | MEDLINE | ID: mdl-26499211

ABSTRACT

Stable peptidomimetics mimicking natural antimicrobial peptides (AMPs) have emerged as a promising class of potential novel antibiotics. In the present study, we aimed at determining whether the antibacterial activity of two α-peptide/ß-peptoid peptidomimetics against a range of bacterial pathogens was affected by conditions mimicking in vivo settings. Their activity was enhanced to an unexpected degree in the presence of human blood plasma for thirteen pathogenic Gram-positive and Gram-negative bacteria. MIC values typically decreased 2- to 16-fold in the presence of a human plasma concentration that alone did not damage the cell membrane. Hence, MIC and MBC data collected in these settings appear to represent a more appropriate basis for in vivo experiments preceding clinical trials. In fact, concentrations of peptidomimetics and peptide antibiotics (e.g. polymyxin B) required for in vivo treatments might be lower than traditionally deduced from MICs determined in laboratory media. Thus, antibiotics previously considered too toxic could be developed into usable last-resort drugs, due to ensuing lowered risk of side effects. In contrast, the activity of the compounds was significantly decreased in heat-inactivated plasma. We hypothesize that synergistic interactions with complement proteins and/or clotting factors most likely are involved.


Subject(s)
Adenosine Monophosphate/metabolism , Anti-Bacterial Agents/metabolism , Bacteria/drug effects , Drug Synergism , Peptidomimetics/metabolism , Plasma/metabolism , Humans , Microbial Sensitivity Tests , Microbial Viability/drug effects
8.
Int J Syst Evol Microbiol ; 65(12): 4503-4507, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26374506

ABSTRACT

A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans DSM 18316T (97.7 % 16S rRNA gene similarity). Strain S2753T was able to grow from 15 to 40 °C and in NaCl concentrations of 0.5 to 9 % (w/v). The predominant fatty acids were 16 : 1ω7c/16 : 1ω6c (27.9 %), 16 : 0 (22.1 %) and 18 : 1ω7c/8 : 1ω6c (21.4 %). The genomic DNA G+C mol content was 49.5 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic differences, strain S2753T is considered to represent a novel species of the genus Photobacterium. Furthermore, whole genome sequence analysis comparing S2753T and type-strains of closely related species of the genus Photobacterium also demonstrated that the strain is genomically distinct enough to be considered a novel species. The name Photobacterium galatheae is proposed and the type-strain is S2753T( = LMG 28894T = DSM 100496T).


Subject(s)
Bivalvia/microbiology , Photobacterium/classification , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Melanesia , Molecular Sequence Data , Photobacterium/genetics , Photobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
ACS Appl Mater Interfaces ; 7(32): 17682-91, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26208080

ABSTRACT

A thin alginate layer induced on the surface of a commercial polysulfone membrane was used as a matrix for noncovalent immobilization of enzymes. Despite the expected decrease of flux across the membrane resulting from the coating, the initial hypothesis was that such a system should allow high immobilized enzyme loadings, which would benefit from the decreased flux in terms of increased enzyme/substrate contact time. The study was performed in a sequential fashion: first, the most suitable types of alginate able to induce a very thin, sustainable gel layer by pressure-driven membrane filtration were selected and evaluated. Then, an efficient method to make the gel layer adhere to the surface of the membrane was developed. Finally, and after confirming that the enzyme loading could remarkably be enhanced by using this method, several strategies to increase the permeate flux were evaluated. Alcohol dehydrogenase (EC 1.1.1.1), able to catalyze the conversion of formaldehyde into methanol, was selected as the model enzyme. An enzyme loading of 71.4% (44.8 µg/cm(2)) was attained under the optimal immobilization conditions, which resulted in a 40% conversion to methanol as compared to the control setup (without alginate) where only 10.8% (6.9 µg/cm(2)) enzyme was loaded, with less than 5% conversion. Such conversion increased to 60% when polyethylene glycol (PEG) was added during the construction of the gel layer, as a strategy to increase flux. No enzyme leakage was observed for both cases (with/without PEG addition). Modeling results showed that the dominant fouling mechanism during gel layer induction (involving enzyme entrapment) was cake layer formation in the initial and intermediate phases, while pore blocking was the dominant mechanism in the final phase. Such mechanisms had a direct consequence on the type of immobilization promoted in each phase. The results suggested that the strategy proposed could be efficiently used to enhance the enzyme loading on polymer membranes.


Subject(s)
Alcohol Dehydrogenase/metabolism , Alginates/chemistry , Alcohol Dehydrogenase/chemistry , Biocatalysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Gels/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Indoles/chemistry , Membranes, Artificial , Methanol/metabolism , Permeability , Polyethylene Glycols/chemistry , Polymers/chemistry , Sulfones/chemistry
10.
Infect Immun ; 83(4): 1396-405, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25624357

ABSTRACT

Enteroaggregative Escherichia coli (EAEC) organisms belong to a diarrheagenic pathotype known to cause diarrhea and can be characterized by distinct aggregative adherence (AA) in a stacked-brick pattern to cultured epithelial cells. In this study, we investigated 118 EAEC strains isolated from the stools of Danish adults with traveler's diarrhea. We evaluated the presence of the aggregative adherence fimbriae (AAFs) by a multiplex PCR, targeting the four known major subunit variants as well as their usher-encoding genes. Almost one-half (49/118) of the clinical isolates did not possess any known AAF major fimbrial subunit, despite the presence of other AggR-related loci. Further investigation revealed the presence of an AAF-related gene encoding a yet-uncharacterized adhesin, termed agg5A. The sequence of the agg5DCBA gene cluster shared fimbrial accessory genes (usher, chaperone, and minor pilin subunit genes) with AAF/III, as well as the signal peptide present in the beginning of the agg3A gene. The complete agg5DCBA gene cluster from a clinical isolate, EAEC strain C338-14, with the typical stacked-brick binding pattern was cloned, and deletion of the cluster was performed. Transformation to a nonadherent E. coli HB101 and complementation of the nonadherent C338-14 mutant with the complete gene cluster restored the AA adhesion. Overall, we found the agg5A gene in 12% of the 118 strains isolated from Denmark, suggesting that this novel adhesin represents an important variant.


Subject(s)
Adhesins, Escherichia coli/genetics , Bacterial Adhesion/genetics , Escherichia coli Proteins/genetics , Escherichia coli/pathogenicity , Fimbriae, Bacterial/genetics , Trans-Activators/genetics , Aged , Amino Acid Sequence , Bacterial Adhesion/physiology , Base Sequence , Cell Line , Child, Preschool , Diarrhea/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/pathology , Female , Genetic Variation , Hemagglutination/physiology , Humans , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...