Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36556576

ABSTRACT

Achieving energy autonomy in a UAV (unmanned aerial vehicle) is an important direction for aerospace research. Long endurance flights allow for continuous observations, taking of measurements and control of selected parameters. To provide continuous flight, a UAV must be able to harvest energy externally. The most popular method to achieve this is the use of solar cells on the wings and structure of the UAV. Flexible solar cells mounted on the surface of the wings can be damaged and contaminated. To prevent these negative changes, it is necessary to apply a protective coating to the solar cells. One of the more promising methods is lamination. To properly carry out this process, some parameters have to be appropriately adjusted. The appropriate selection of temperature and feed speed in the laminator allows a PV (photovoltaic) panel to be coated with film, minimizing any defects in the structure. Covering PV panels with film reduces the performance of the solar cells. By measuring the current-voltage characteristics, data were obtained showing the change in the performance of solar cells before and after lamination. In the case of testing flexible PV panels, the efficiency decreased from 24.29 to 23.33%. This informed the selection of the appropriate number of solar cells for the UAV, considering the losses caused by the lamination process.

SELECTION OF CITATIONS
SEARCH DETAIL
...