Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
J Mater Chem A Mater ; 12(17): 10044-10049, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694264

ABSTRACT

A novel cubic mesoporous metal-organic framework (MOF), consisting of hexahydroxy-cata-hexabenzocoronene (c-HBC) and FeIII ions is presented. The highly crystalline and porous MOF features broad optical absorption over the whole visible and near infrared spectral regions. An electrical conductivity of 10-4 S cm-1 was measured on a pressed pellet.

2.
Chemistry ; 30(16): e202400127, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38446047

ABSTRACT

This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.

3.
J Am Chem Soc ; 146(6): 3963-3973, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305745

ABSTRACT

One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.

4.
Small ; : e2306732, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073322

ABSTRACT

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

5.
J Am Chem Soc ; 145(43): 23630-23638, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37852932

ABSTRACT

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 µm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.

6.
Chemistry ; 29(69): e202302002, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37682106

ABSTRACT

The design and synthesis of strained aromatics provide an additional insight into the relationship between structure and properties. In the last years, several approaches to twist pyrene-fused azaacenes have been developed that allow to introduce twists of different sizes. Herein, we describe the synthesis of a new set of twisted dibenzotetraazahexacenes constituted by fused pyrene and quinoxaline residues that have been distorted by introducing increasingly larger substituents on the quinoxaline residues. Their twisted structure has been demonstrated by single-crystal X-ray diffraction. Furthermore, absorption, fluorescence, electrochemical and theoretical studies shine light on the effects of the substituents and twists on the optoelectronic and redox properties.

7.
Angew Chem Int Ed Engl ; 62(5): e202216540, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36469042

ABSTRACT

Organic cages have gained increasing attention in recent years as molecular hosts and porous materials. Among these, barrel-shaped cages or molecular nanobarrels are promising systems to encapsulate large hosts as they possess windows of the same size as their internal cavity. However, these systems have received little attention and remain practically unexplored despite their potential. Herein, we report the design and synthesis of a new trigonal prismatic organic nanobarrel with two large triangular windows with a diameter of 12.7 Šoptimal for the encapsulation of C60 . Remarkably, this organic nanobarrel shows a high affinity for C60 in solvents in which C60 is virtually insoluble, providing stable solutions of C60 .

8.
Chem Sci ; 13(36): 10773-10778, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36320686

ABSTRACT

Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol-gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art π-gels.

9.
J Am Chem Soc ; 144(34): 15443-15450, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35993775

ABSTRACT

The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure-property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations show how the π-stacked chains of the polymer generate optimal channels for charge transport.

10.
Chemistry ; 28(44): e202201384, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35638131

ABSTRACT

A series of rhodium and iridium complexes with a N-heterocyclic carbene (NHC) ligand decorated with a perylene-diimide-pyrene moiety are described. Electrochemical studies reveal that the complexes can undergo two successive one-electron reduction events, associated to the reduction of the PDI moiety attached to the NHC ligand. The reduction of the ligand produces a significant increase on its electron-donating character, as observed from the infrared spectroelectrochemical studies. The rhodium complex was tested in the [3+2] cycloaddition of diphenylcyclopropenone and methylphenylacetylene, where it displayed a redox-switchable behavior. The neutral complex showed moderate activity, which was suppressed when the catalyst was reduced.

11.
J Org Chem ; 87(12): 7635-7642, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35616330

ABSTRACT

In this study, we report the synthesis of a series of planar and helical dinaphthophenazines by cyclocondensation reactions between the newly developed 9,10-bis((triisopropylsilyl)ethynyl)anthracene-1,2-dione and different diamines. Their optoelectronic and electrochemical properties are studied by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.

12.
Angew Chem Int Ed Engl ; 61(27): e202205018, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35467070

ABSTRACT

Molecular nanoribbons are a class of atomically-precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene-pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach-with a 60 linearly-fused ring backbone (14.9 nm) and a 324-atoms core (C276 N48 )-shows an extremely high molar absorptivity (values up to 1 198 074 M-1 cm-1 ) that also endows it with a high molar fluorescence brightness (8700 M-1 cm-1 ).

13.
Nat Mater ; 21(5): 526-532, 2022 05.
Article in English | MEDLINE | ID: mdl-35256792

ABSTRACT

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Subject(s)
Nanowires , Electricity , Static Electricity , Stereoisomerism , Tellurium
14.
Nature ; 603(7903): 835-840, 2022 03.
Article in English | MEDLINE | ID: mdl-35355001

ABSTRACT

The quality of crystalline two-dimensional (2D) polymers1-6 is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis7-10 and (opto)electronics11,12, among others13-18. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation-elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of 'non-classical' crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate. The experimental data have been further rationalized by atomistic computer models, which, taken together, provide a detailed picture of the dynamic on-surface polymerization process. Furthermore, we show how 2D crystal growth can be affected by abnormal grain growth. This finding provides support for the use of abnormal grain growth (a typical phenomenon in metallic and ceramic systems) to convert a polycrystalline structure into a single crystal in organic and 2D material systems.

15.
J Am Chem Soc ; 144(11): 5042-5050, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35189061

ABSTRACT

Two-dimensional (2D) covalent organic frameworks (COFs) are an emerging class of promising 2D materials with high crystallinity and tunable structures. However, the low electrical conductivity impedes their applications in electronics and optoelectronics. Integrating large π-conjugated building blocks into 2D lattices to enhance efficient π-stacking and chemical doping is an effective way to improve the conductivity of 2D COFs. Herein, two nonplanar 2D COFs with kagome (DHP-COF) and rhombus (c-HBC-COF) lattices have been designed and synthesized from distorted aromatics with different π-conjugated structures (flexible and rigid structure, respectively). DHP-COF shows a highly distorted 2D lattice that hampers stacking, consequently limiting its charge carrier transport properties. Conversely, c-HBC-COF, with distorted although concave-convex self-complementary nodes, shows a less distorted 2D lattice that does not interfere with interlayer π-stacking. Employing time- and frequency-resolved terahertz spectroscopy, we unveil a high charge-carrier mobility up to 44 cm2 V-1 s-1, among the highest reported for 2D COFs.

16.
J Am Chem Soc ; 144(6): 2765-2774, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35099195

ABSTRACT

Molecular conformation has an important role in chemistry and materials science. Molecular nanoribbons can adopt chiral twisted helical conformations. However, the synthesis of single-handed helically twisted molecular nanoribbons still represents a considerable challenge. Herein, we describe an asymmetric approach to induce single-handed helicity with an excellent degree of conformational discrimination. The chiral induction is the result of the chiral strain generated by fusing two oversized chiral rings and of the propagation of that strain along the nanoribbon's backbone.

17.
Angew Chem Int Ed Engl ; 61(14): e202111816, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35077609

ABSTRACT

The chemical processing of low-dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N-doped molecular graphene nanoribbons (GNRs) with mass-selected ultra-high vacuum electrospray controlled ion beam deposition on surfaces and real-space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on-surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal-organic coordination polymers.

18.
Angew Chem Int Ed Engl ; 61(2): e202113657, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34748268

ABSTRACT

Two-dimensional fused aromatic networks (2D FANs) have emerged as a highly versatile alternative to holey graphene. The synthesis of 2D FANs with increasingly larger lattice dimensions will enable new application perspectives. However, the synthesis of larger analogues is mostly limited by lack of appropriate monomers and methods. Herein, we describe the synthesis, characterisation and properties of an expanded 2D FAN with 90-ring hexagons, which exceed the largest 2D FAN lattices reported to date.

20.
Nanoscale ; 13(14): 6834-6845, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33885484

ABSTRACT

Synthesis of covalent organic frameworks (COFs) is well-advanced but understanding their nanoscale structure and interaction with other materials remains a significant challenge. Here, we have developed a methodology for the detailed imaging and analysis of COF crystallites using carbon nanotube substrates for COF characterisation. Detailed investigation using powder X-ray diffraction, infrared spectroscopy, mass spectrometry and scanning electron microscopy in conjunction with a local probe method, transmission electron microscopy (TEM), revealed details of COF growth and nucleation at the nanoscale. A boronate ester COF undergoes preferential growth in the a-b crystallographic plane under solvothermal conditions. Carbon nanotubes were found to not impact the mode of COF growth, but the crystallites on nanotubes were smaller than COF crystallites not on supports. COF crystalline regions with sizes of tens of nanometres exhibited preferred orientation on nanotube surfaces, where the c-axis is oriented between 50 and 90° relative to the carbon surface. The COF/nanotube hybrid structure was found to be more complex than the previously suggested concentric core-shell model and can be better described as a nanocrystalline scaly COF/nanotube hybrid.

SELECTION OF CITATIONS
SEARCH DETAIL
...