Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38421855

ABSTRACT

The rapid growth of large datasets has led to a demand for novel approaches to extract valuable insights from intricate information. Graph theory provides a natural framework to model these relationships, but standard graphs may not capture the complex interdependence between components. Hypergraphs are a powerful extension of graphs that can represent higher-order relationships in the data. In this paper, we propose a novel approach to studying the structure of a dataset using hypergraph theory and a filtration method. Our method involves building a set of hypergraphs based on a variable distance parameter, enabling us to infer qualitative and quantitative information about the data structure. We apply our method to various sets of points, dynamical systems, signal models, and real electrophysiological data. Our results show that the proposed method can effectively differentiate between varying datasets, demonstrating its potential utility in a range of scientific applications.

2.
Neurosci Lett ; 816: 137474, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37690497

ABSTRACT

Studying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition. The present study aims to investigate the effects of a visual stimulus on the primary visual cortex under gamma oscillations. Specifically, we sought to explore the behavior of gamma oscillations triggered by optogenetic stimulation in the II and IV layers of the visual cortex, both with and without concurrent visual stimulation. Our results show that optogenetic stimulation increases the power of gamma oscillation in both layers of the visual cortex. However, the combined stimuli resulted in a reduction of gamma power in layer II and an increase and reinforcement in gamma power in layer IV. Modelling the results with the Wilson-Cowan model suggests changes in the input of the excitatory population due to the combined stimuli. In addition, our analysis of the data using the Lempel-Ziv complexity method supports our interpretations from the modeling. Thus, our results suggest that optogenetic stimulation enhances low gamma power in both layers of the visual cortex, while simultaneous visual stimulation has differing effects on the two layers, reducing gamma power in layer II and increasing it in layer IV.


Subject(s)
Optogenetics , Visual Cortex , Photic Stimulation/methods , Optogenetics/methods , Visual Perception/physiology , Brain , Visual Cortex/physiology , Gamma Rhythm/physiology
3.
Chaos ; 33(3): 033144, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37003832

ABSTRACT

Divergences or similarity measures between probability distributions have become a very useful tool for studying different aspects of statistical objects, such as time series, networks, and images. Notably, not every divergence provides identical results when applied to the same problem. Therefore, it seems convenient to have the widest possible set of divergences to be applied to the problems under study. Besides this choice, an essential step in the analysis of every statistical object is the mapping of each one of their representing values into an alphabet of symbols conveniently chosen. In this work, we choose the family of divergences known as the Burbea-Rao centroids (BRCs). For the mapping of the original time series into a symbolic sequence, we work with the ordinal pattern scheme. We apply our proposals to analyze simulated and real time series and to real textured images. The main conclusion of our work is that the best BRC, at least in the studied cases, is the Jensen-Shannon divergence, besides the fact that it verifies some interesting formal properties.

4.
Heliyon ; 9(4): e15005, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37095928

ABSTRACT

Our purpose is to address the biological problem of finding foundations of the organization in the collective activity among cell networks in the nervous system, at the meso/macroscale, giving rise to cognition and consciousness. But in doing so, we encounter another problem related to the interpretation of methods to assess the neural interactions and organization of the neurodynamics, because thermodynamic notions, which have precise meaning only under specific conditions, have been widely employed in these studies. The consequence is that apparently contradictory results appear in the literature, but these contradictions diminish upon the considerations of the specific circumstances of each experiment. After clarifying some of these controversial points and surveying some experimental results, we propose that a necessary condition for cognition/consciousness to emerge is to have available enough energy, or cellular activity; and a sufficient condition is the multiplicity of configurations in which cell networks can communicate, resulting in non-uniform energy distribution, the generation and dissipation of energy gradients due to the constant activity. The diversity of sensorimotor processing of higher animals needs a flexible, fluctuating web on neuronal connections, and we review results supporting such multiplicity of configurations among brain regions associated with conscious awareness and healthy brain states. These ideas may reveal possible fundamental principles of brain organization that could be extended to other natural phenomena and how healthy activity may derive to pathological states.

5.
Neuroinformatics ; 20(4): 1041-1054, 2022 10.
Article in English | MEDLINE | ID: mdl-35511398

ABSTRACT

The use of anaesthesia is a fundamental tool in the investigation of consciousness. Anesthesia procedures allow to investigate different states of consciousness from sedation to deep anesthesia within controlled scenarios. In this study we use information quantifiers to measure the complexity of electrocorticogram recordings in monkeys. We apply these metrics to compare different stages of general anesthesia for evaluating consciousness in several anesthesia protocols. We find that the complexity of brain activity can be used as a correlate of consciousness. For two of the anaesthetics used, propofol and medetomidine, we find that the anaesthetised state is accompanied by a reduction in the complexity of brain activity. On the other hand we observe that use of ketamine produces an increase in complexity measurements. We relate this observation with increase activity within certain brain regions associated with the ketamine used doses. Our measurements indicate that complexity of brain activity is a good indicator for a general evaluation of different levels of consciousness awareness, both in anesthetized and non anesthetizes states.


Subject(s)
Anesthetics , Ketamine , Propofol , Animals , Consciousness , Propofol/pharmacology , Ketamine/pharmacology , Medetomidine/pharmacology , Haplorhini , Brain , Anesthesia, General , Electroencephalography
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35145021

ABSTRACT

Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.


Subject(s)
Cerebral Cortex/physiology , Consciousness/physiology , Electrophysiological Phenomena , Animals , Brain Mapping , Humans
7.
Entropy (Basel) ; 22(9)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-33286690

ABSTRACT

One of the biggest queries in cognitive sciences is the emergence of consciousness from matter. Modern neurobiological theories of consciousness propose that conscious experience is the result of interactions between large-scale neuronal networks in the brain, traditionally described within the realm of classical physics. Here, we propose a generalized connectionist framework in which the emergence of "conscious networks" is not exclusive of large brain areas, but can be identified in subcellular networks exhibiting nontrivial quantum phenomena. The essential feature of such networks is the existence of strong correlations in the system (classical or quantum coherence) and the presence of an optimal point at which the system's complexity and energy dissipation are maximized, whereas free-energy is minimized. This is expressed either by maximization of the information content in large scale functional networks or by achieving optimal efficiency through the quantum Goldilock effect.

8.
Phys Rev E ; 101(5-1): 052117, 2020 May.
Article in English | MEDLINE | ID: mdl-32575311

ABSTRACT

The transfer entropy and the transfer entropy rate are closely related concepts that measure information exchange between two dynamical systems. These measures allow us to study linear and nonlinear causality relations and can be estimated through the use of different methodologies. However, some of them assume a data model and/or are computationally expensive. This article depicts a methodology to estimate the transfer entropy rate between two systems through the Lempel-Ziv complexity. This methodology offers a set of advantages: It estimates the transfer entropy rate from two single discrete series of measures, it is not computationally expensive, and it does not assume any data model. The simulation results over three different unidirectional coupled dynamical systems suggest that this methodology can be used to assess the direction and strength of the information flow between systems. Moreover, it provides good estimations for short-length time series.

9.
Front Neurosci ; 13: 1106, 2019.
Article in English | MEDLINE | ID: mdl-31680839

ABSTRACT

A possible framework to characterize nervous system dynamics and its organization in conscious and unconscious states is introduced, derived from a high level perspective on the coordinated activity of brain cell ensembles. Some questions are best addressable in a global framework and here we build on past observations about the structure of configurations of brain networks in conscious and unconscious states and about neurophysiological results. Aiming to bind some results together into some sort of coherence with a central theme, the scenario that emerges underscores the crucial importance of the creation and dissipation of energy gradients in brain cellular ensembles resulting in maximization of the configurations in the functional connectivity among those networks that favor conscious awareness and healthy conditions. These considerations are then applied to indicate approaches that can be used to improve neuropathological syndromes.

SELECTION OF CITATIONS
SEARCH DETAIL
...