Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Adv Sci (Weinh) ; 8(14): e2005027, 2021 07.
Article in English | MEDLINE | ID: mdl-34018704

ABSTRACT

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.


Subject(s)
Brain/drug effects , Muscarinic Agonists/pharmacology , Animals , Ferrets , Mice , Mice, Inbred C57BL , Models, Animal
3.
J Neurosci ; 41(23): 5029-5044, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33906901

ABSTRACT

Quantitative estimations of spatiotemporal complexity of cortical activity patterns are used in the clinic as a measure of consciousness levels, but the cortical mechanisms involved are not fully understood. We used a version of the perturbational complexity index (PCI) adapted to multisite recordings from the ferret (either sex) cerebral cortex in vitro (sPCI) to investigate the role of GABAergic inhibition in cortical complexity. We studied two dynamical states: slow-wave activity (synchronous state) and desynchronized activity, that express low and high causal complexity respectively. Progressive blockade of GABAergic inhibition during both regimes revealed its impact on the emergent cortical activity and on sPCI. Gradual GABAA receptor blockade resulted in higher synchronization, being able to drive the network from a desynchronized to a synchronous state, with a progressive decrease of complexity (sPCI). Blocking GABAB receptors also resulted in a reduced sPCI, in particular when in a synchronous, slow wave state. Our findings demonstrate that physiological levels of inhibition contribute to the generation of dynamical richness and spatiotemporal complexity. However, if inhibition is diminished or enhanced, cortical complexity decreases. Using a computational model, we explored a larger parameter space in this relationship and demonstrate a link between excitatory/inhibitory balance and the complexity expressed by the cortical network.SIGNIFICANCE STATEMENT The spatiotemporal complexity of the activity expressed by the cerebral cortex is a highly revealing feature of the underlying network's state. Complexity varies with physiological brain states: it is higher during awake than during sleep states. But it also informs about pathologic states: in disorders of consciousness, complexity is lower in an unresponsive wakefulness syndrome than in a minimally conscious state. What are the network parameters that modulate complexity? Here we investigate how inhibition, mediated by either GABAA or GABAA receptors, influences cortical complexity. And we do this departing from two extreme functional states: a highly synchronous, slow-wave state, and a desynchronized one that mimics wakefulness. We find that there is an optimal level of inhibition in which complexity is highest.


Subject(s)
Cerebral Cortex/physiology , Consciousness/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Wakefulness/physiology , Animals , Female , Ferrets , Male
4.
Nat Commun ; 11(1): 4388, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873805

ABSTRACT

Presynaptic spike timing-dependent long-term depression (t-LTD) at hippocampal CA3-CA1 synapses is evident until the 3rd postnatal week in mice, disappearing during the 4th week. At more mature stages, we found that the protocol that induced t-LTD induced t-LTP. We characterized this form of t-LTP and the mechanisms involved in its induction, as well as that driving this switch from t-LTD to t-LTP. We found that this t-LTP is expressed presynaptically at CA3-CA1 synapses, as witnessed by coefficient of variation, number of failures, paired-pulse ratio and miniature responses analysis. Additionally, this form of presynaptic t-LTP does not require NMDARs but the activation of mGluRs and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels and the release of Ca2+ from intracellular stores. Nitric oxide is also required as a messenger from the postsynaptic neuron. Crucially, the release of adenosine and glutamate by astrocytes is required for t-LTP induction and for the switch from t-LTD to t-LTP. Thus, we have discovered a developmental switch of synaptic transmission from t-LTD to t-LTP at hippocampal CA3-CA1 synapses in which astrocytes play a central role and revealed a form of presynaptic LTP and the rules for its induction.


Subject(s)
Astrocytes/metabolism , Hippocampus/growth & development , Long-Term Potentiation/physiology , Synaptic Transmission/physiology , Adenosine/metabolism , Animals , Female , Glutamic Acid/metabolism , Hippocampus/cytology , Male , Mice , Patch-Clamp Techniques , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
5.
Front Cell Dev Biol ; 8: 797, 2020.
Article in English | MEDLINE | ID: mdl-32984317

ABSTRACT

Neurons derived from human induced pluripotent stem cells (hiPSC-derived neurons) offer novel opportunities for the development of preclinical models of human neurodegenerative diseases (NDDs). Recent advances in the past few years have increased substantially the potential of these techniques and have uncovered new challenges that the field is facing. Here, we outline and discuss challenges related to the functional characterization of hiPSC-derived neurons and propose ways to overcome current difficulties. In particular, the enormous variability among studies in the electrical properties of hiPSC-derived neurons and broad differences in cell maturation are factors that impair reproducibility. Furthermore, we discuss how the use of 3D brain organoids are of help in resolving some difficulties posed by 2D cultures. Finally, we elaborate on recent and future advances that may help to overcome the discussed challenges and speed-up progress in the field.

6.
Adv Exp Med Biol ; 1131: 965-984, 2020.
Article in English | MEDLINE | ID: mdl-31646541

ABSTRACT

Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.


Subject(s)
Calcium , Neuronal Plasticity , Synapses , Calcium/metabolism , Humans , Long-Term Potentiation , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission
8.
Elife ; 5: e11206, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26765773

ABSTRACT

In pyramidal neurons such as hippocampal area CA1 and basolateral amygdala, a slow afterhyperpolarization (sAHP) follows a burst of action potentials, which is a powerful regulator of neuronal excitability. The sAHP amplitude increases with aging and may underlie age related memory decline. The sAHP is due to a Ca(2+)-dependent, voltage-independent K(+) conductance, the molecular identity of which has remained elusive until a recent report suggested the Ca(2+)-activated K(+) channel, IK1 (KCNN4) as the sAHP channel in CA1 pyramidal neurons. The signature pharmacology of IK1, blockade by TRAM-34, was reported for the sAHP and underlying current. We have examined the sAHP and find no evidence that TRAM-34 affects either the current underling the sAHP or excitability of CA1 or basolateral amygdala pyramidal neurons. In addition, CA1 pyramidal neurons from IK1 null mice exhibit a characteristic sAHP current. Our results indicate that IK1 channels do not mediate the sAHP in pyramidal neurons.


Subject(s)
Action Potentials , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Pyramidal Cells/physiology , Animals , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Mice, Inbred C57BL , Mice, Knockout , Pyrazoles/metabolism , Rats, Wistar
9.
J Neurosci ; 34(20): 6807-12, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828634

ABSTRACT

The medial entorhinal cortex (MEC) is important for spatial navigation and memory. Stellate cells (SCs) of MEC layer II provide major input to the hippocampus, and are thought to be the neuronal correlate of the grid cells. Their electrophysiological properties have been used to explain grid field formation. However, little is known about the functional roles of potassium channels in SCs. M-current is a slowly activating potassium current, active at subthreshold potentials. Although some studies have suggested that Kv7/M-channels may affect subthreshold resonance in SCs, others have found no Kv7/M-current in these cells, so the expression and roles of Kv7/M-channels in SCs are still debated. Using whole-cell voltage-clamp, we have identified a typical M-current with pharmacological properties characteristic of Kv7/M-channels in rat MEC SCs. Current-clamp experiments showed that the specific Kv7/M-channel blocker XE991 increased SCs excitability, and reduced spike frequency adaptation. Our results demonstrate that Kv7/M-channels are expressed in SCs and contribute substantially to regulation of excitability in these cells.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/metabolism , KCNQ Potassium Channels/metabolism , Neurons/metabolism , Action Potentials/drug effects , Animals , Anthracenes/pharmacology , Entorhinal Cortex/cytology , Entorhinal Cortex/drug effects , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Male , Neurons/cytology , Neurons/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
10.
J Physiol ; 592(4): 669-93, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24366266

ABSTRACT

The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP-spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate.


Subject(s)
Excitatory Postsynaptic Potentials , Hippocampus/physiology , KCNQ Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Synapses/physiology , Action Potentials , Animals , Benzimidazoles/pharmacology , Carbamates/pharmacology , Hippocampus/cytology , Hippocampus/metabolism , Male , Membrane Potentials , Membrane Transport Modulators/pharmacology , Neurons/metabolism , Neurons/physiology , Phenylenediamines/pharmacology , Rats , Rats, Wistar , Small-Conductance Calcium-Activated Potassium Channels/agonists , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...