Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Opt Lett ; 36(19): 3903-5, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21964136

ABSTRACT

We compare nonlinear impairments in phase-modulated transmission with and without polarization multiplexing. Using an analytic approach that enabled us to accurately predict the Q factor at the receiver, we show that, without polarization multiplexing, the differential receiver is insensitive to two-pulse cross phase modulation, whereas with polarization multiplexing two-pulse interaction between cross-polarized components causes significant performance degradation.

2.
Opt Express ; 19(5): 3990-5, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21369225

ABSTRACT

The mechanisms responsible for nonlinear impairments in single-channel phase modulated system employing differential detection are investigated. The role of dispersion precompensation is discussed. It is shown that precompensation may be designed as to minimize the in-phase components of the fluctuations thus reducing nonlinear impairments. In differential-phase-shift-keying the effect of precompensation is stronger than in differential-quadrature-phase-shift-keying. The results of an analytic theory are compared with split-step based computer simulations using realistic system parameters.


Subject(s)
Models, Theoretical , Nonlinear Dynamics , Telecommunications , Computer Simulation , Light , Scattering, Radiation
4.
Opt Lett ; 24(16): 1169-71, 1999 Aug 15.
Article in English | MEDLINE | ID: mdl-18073975

ABSTRACT

The dynamic behavior of single-channel transmission in standard fibers with strong dispersion management and linear compensating devices was theoretically and numerically analyzed. We compared a single pulse and a pseudorandom sequence to highlight the relevant roles played by nonlinearity-induced spectrum distortion and pulse interaction. As a result, 40/Gbit/s transmission on an 1800-km dispersion-management link with 100-km spans of standard fiber was obtained.

5.
Subst Use Misuse ; 33(2): 271-82, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9516726
6.
Subst Use Misuse ; 33(2): 283-94, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9516727
10.
13.
Phys Rev C Nucl Phys ; 54(4): 2031-2036, 1996 Oct.
Article in English | MEDLINE | ID: mdl-9971551
14.
Phys Rev A ; 51(2): 914-922, 1995 Feb.
Article in English | MEDLINE | ID: mdl-9911667
15.
Opt Lett ; 20(1): 28-30, 1995 Jan 01.
Article in English | MEDLINE | ID: mdl-19855786

ABSTRACT

We demonstrate numerically that a compensation of the polarization mode dispersion can be observed for nonreturn-to-zero signals as a result of a trapping effect, in analogy to the well-known soliton behavior. Conditions for such compensation are shown, and a comparison with the soliton case is reported.

16.
Opt Lett ; 20(13): 1465-7, 1995 Jul 01.
Article in English | MEDLINE | ID: mdl-19862050

ABSTRACT

The interplay between amplif ied spontaneous emission noise and Kerr nonlinearity is shown to produce significant depolarization of light in long-haul transmission links operating close to zero dispersion. If polarization mode dispersion is neglected, a simple analytical theory predicts the length scale over which depolarization occurs. The analytical theory is compared with computer simulations, which also permit analysis of the case in which polarization mode dispersion is included.

17.
18.
Opt Lett ; 19(16): 1198-200, 1994 Aug 15.
Article in English | MEDLINE | ID: mdl-19855468

ABSTRACT

We numerically study the evolution of nonsoliton signals in fiber links in the presence of the Kerr effect, chromatic dispersion, and the amplified spontaneous emission of optical amplifiers. Conditions in which the amplified spontaneous emission noise does not deeply affect the signal propagation are found, and the nonlinear Kerr compensation of the distortion induced by the chromatic dispersion is shown.

19.
Med. infant ; 1(1): 1-2, jul. 1993.
Article in Spanish | LILACS | ID: lil-281797
SELECTION OF CITATIONS
SEARCH DETAIL
...