Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256207

ABSTRACT

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Subject(s)
Multidrug Resistance-Associated Proteins , Peptides , alpha-Synuclein , alpha-Synuclein/genetics , Bridged-Ring Compounds , Endoplasmic Reticulum , Peptides/pharmacology , Pseudogenes , Humans , Hep G2 Cells , Multidrug Resistance-Associated Proteins/genetics
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003580

ABSTRACT

There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Hep G2 Cells , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate
3.
Metabolites ; 13(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984881

ABSTRACT

Breast cancer (BC) is the most common type of cancer among women in almost all countries worldwide and is one of the oncological pathologies for which is indicated fertility preservation, a type of procedure used to help keep a person's ability to have children. Follicular fluid (FF) is a major component of oocyte microenvironment, which is involved in oocyte growth, follicular maturation, and in communication between germ and somatic cells; furthermore, it accumulates all metabolites during oocytes growth. To obtain information about changes on fertility due to cancer, we aimed at investigating potential biomarkers to discriminate between FF samples obtained from 16 BC patients and 10 healthy women undergoing in vitro fertilization treatments. An NMR-based metabolomics approach was performed to investigate the FF metabolic profiles; ELISA and western blotting assays were used to investigate protein markers of oxidative and inflammatory stress, which are processes closely related to cancer. Our results seem to suggest that FFs of BC women display some significant metabolic alterations in comparison to healthy controls, and these variations are also related with tumor staging.

4.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430920

ABSTRACT

Epidemiological studies have postulated an inverse correlation between developing cancer and neurodegeneration. It is known that the secretome plays a vital role in cell-cell communication in health and disease; the microglia is the resident macrophage of the central nervous system which maintains neuronal integrity by adapting as the microenvironment changes. The present study aimed to identify, in a cell model, biomarkers that link neurodegenerative diseases to cancer or vice versa. Real-time PCR and western blot analysis were used to characterize the effects on gene and protein expression of human hepatoblastoma (HepG2) and human microglia (HMC-III) cells after exchanging part of their conditioned medium. Biomarkers of the endoplasmic reticulum, and mitophagy and inflammatory processes were evaluated. In both cell types, we observed the activation of cytoprotective mechanisms against any potential pro-oxidant or pro-inflammatory signals present in secretomes. In contrast, HepG2 but not HMC-III cells seem to trigger autophagic processes following treatment with conditioned medium of microglia, thus suggesting a cell-specific adaptive response.


Subject(s)
Cell Physiological Phenomena , Microglia , Humans , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Microglia/metabolism , Biomarkers/metabolism , Gene Expression
5.
Pathophysiology ; 29(2): 173-186, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35645325

ABSTRACT

The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3'-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers.

6.
Front Physiol ; 13: 840109, 2022.
Article in English | MEDLINE | ID: mdl-35283772

ABSTRACT

The aim of this pilot study is to evaluate if SARS-CoV-2 infection or vaccination against SARS-CoV-2 infection induce observable metabolic effects in follicular fluid of women who are following in vitro fertilization (IVF) treatments. The possible impact of coronavirus disease 2019 (COVID-19) on fertility and IVF outcome is considered. We have selected for this study: six women vaccinated against SARS-CoV-2 infection, five recovered COVID-19 patients, and we used nine healthy women as the control group. At the time of oocytes retrieval from participants in the study, follicular fluids were collected and metabolomic analysis was performed by 1H NMR spectroscopy in combination with multivariate analysis to interpret the spectral data. The search for antibody positivity in the follicular fluid aspirates was also carried out, together with the western blotting analysis of some inflammatory proteins, interleukin-6, tumor necrosis factor α (TNFα), and the free radical scavenger superoxide dismutase 2. Higher levels of Ala and Pro together with lower levels of lipids and trimethylamine N-oxide (TMAO) were found in follicular fluids (FFs) of vaccinated women while lower levels of many metabolites were detected in FFs of recovered COVID patients. Expression level of TNF-α was significantly lower both in recovered COVID-19 patients and vaccinated women in comparison to healthy controls.

7.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918053

ABSTRACT

Quercetin is a member of the flavonoid group of compounds, which is abundantly present in various dietary sources. It has excellent antioxidant properties and anti-inflammatory activity and is very effective as an anti-cancer agent against various types of tumors, both in vivo and in vitro. Quercetin has been also reported to modulate the activity of some members of the multidrug-resistance transporters family, such as P-gp, ABCC1, ABCC2, and ABCG2, and the activity of ecto-5'-nucleotidase (NT5E/CD73), a key regulator in some tumor processes such as invasion, migration, and metastasis. In this study, we investigated the effect of Quercetin on ABCC6 expression in HepG2 cells. ABCC6 is a member of the superfamily of ATP-binding cassette (ABC) transporters, poorly involved in drug resistance, whose mutations cause pseudoxanthoma elasticum, an inherited disease characterized by ectopic calcification of soft connective tissues. Recently, it has been reported that ABCC6 contributes to cytoskeleton rearrangements and HepG2 cell motility through purinergic signaling. Gene and protein expression were evaluated by quantitative Reverse-Transcription PCR (RT-qPCR) and western blot, respectively. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by an in vitro wound-healing migration assay. We propose that ABCC6 expression may be controlled by the AKT pathway as part of an adaptative response to oxidative stress, which can be mitigated by the use of Quercetin-like flavonoids.


Subject(s)
Ion Channel Gating/drug effects , Multidrug Resistance-Associated Proteins/metabolism , Quercetin/pharmacology , Actins/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Protein Multimerization/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
8.
Molecules ; 26(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466890

ABSTRACT

Muscari comosum L. bulbs are commonly used as food in South Italy and also in folk medicine. By evaluating in vitro antioxidant activity and biological activities of their aqueous and methanol extracts, we shed light on the potential role, including both the nutraceutical and health benefits, of this plant. Total polyphenol content (TPC) and total flavonoid content (TFC) were evaluated by the Folin-Ciocalteu method and by the aluminum chloride method, respectively. Antioxidant activity was investigated by three in vitro assays and relative antioxidant capacity index (RACI) was calculated to compare results obtained by different tests. The extracts were tested to evaluate their possible involvement in redox homeostasis, using the human hepatoma (HepG2) cell line used as model. The extracts exhibited concentration/solvent dependent radical scavenging activity, as well as dysregulation of some genes involved in redox pathways by promoting Nrf2, SOD-2, GPX1, ABCC6 and ABCG2 expression. NMR metabolomics analysis suggests that HepG2 cells treated with Muscari comosum extracts experience changes in some metabolites involved in various metabolic pathways.


Subject(s)
Antioxidants/pharmacology , Asparagaceae/chemistry , Flavonoids/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Cell Proliferation , Flavonoids/analysis , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Metabolome/drug effects , Polyphenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...