Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Res Natl Inst Stand Technol ; 126: 126026, 2021.
Article in English | MEDLINE | ID: mdl-38469445

ABSTRACT

The National Institute of Standards and Technology (NIST) developed an experimental technique to measure the dynamic flow stress of metals under rapid heating to study their time-dependent plastic response when heating times are short enough to interrupt or bypass thermally driven microstructural evolution. Such conditions may exist as chips are formed in the machining process. Measurements of American Iron and Steel Institute1045 steel behavior up to 1000 °C showed complex thermal softening due to dynamic strain aging effects and the diffusion-limited austenite transformation process beginning at the A1 temperature (712 °C). This paper proposes a constitutive model to capture the flow stress and hardening evolution of 1045 steel under rapidly heated conditions for simulating metal cutting. The model combines the Preston-TonksWallace plasticity model, which uses five parameters to capture complex rate- and temperature-sensitive strain hardening, with a dual-ratesensitivity model to capture the response of rapidly heated 1045 steel. Finally, a strain-rate-dependent Gaussian function is introduced to capture dynamic strain aging effects, which act over a narrow range of temperatures that change with strain rate. The proposed model is compared to existing plasticity models for 1045 steel over the range of data available and at a representative machining condition.

2.
Article in English | MEDLINE | ID: mdl-38496037

ABSTRACT

In the modelling of machining operations, constitutive models must consider the material behavior subject to high plastic strains, high strain rates, high temperatures and high heating rates. A new material model for AISI 1045, which captures time-dependent plastic response associated with interrupted austenite transformation under short (sub-second) heating times, is deployed to simulate orthogonal cutting experiments. High speed video and digital image correlation measurements are used to capture chip behavior. The new model, which also includes complex strain hardening and dynamic strain aging effects, show better agreement with experiments at high cutting speeds compared with a basic Johnson-Cook material model from the literature.

3.
Procedia Eng ; 2072017.
Article in English | MEDLINE | ID: mdl-33029261

ABSTRACT

In this study, the effects of strain rate on the mechanical properties and the strain-induced austenite-to-martensite transformation in type 201 austenitic stainless steel (SS201) were investigated. This grade was selected as a low-cost stainless steel with good lightweighting potential for automotive applications. The material was tested in tension at a quasi-static rate (5×10-2 s-1), two low-intermediate rates (100 s-1 and 101 s-1), and a high rate (5×102 s-1). 3D digital image correlation was used to enable accurate strain measurements during mechanical testing. Magnetic induction and X-ray diffraction were used ex-situ of deformation to measure the volume fraction of martensite formed at each strain rate, for different plastic strain levels. The effects of strain rate on deformation-induced martensite formation and on the stress/strain behavior was determined in this study, and was compared to results reported in the literature for 300 series austenitic stainless steels. The results show a favourable response for the SS201, which exhibits a substantial increase in strength and energy absorption at high rates without compromising tensile ductility.

4.
JOM (1989) ; 68(7): 1832-1838, 2016 Jul.
Article in English | MEDLINE | ID: mdl-28082822

ABSTRACT

Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high temperature manufacturing processes, including high speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time-dependent. The present work uses a rapidly-heated, high strain rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about three seconds. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

5.
J Mech Behav Biomed Mater ; 14: 89-100, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22982958

ABSTRACT

Soft elastomeric materials that mimic real soft human tissues are sought to provide realistic experimental devices to simulate the human body's response to blast loading to aid the development of more effective protective equipment. The dynamic mechanical behavior of these materials is often measured using a Kolsky bar because it can achieve both the high strain rates (>100s(-1)) and the large strains (>20%) that prevail in blast scenarios. Obtaining valid results is challenging, however, due to poor dynamic equilibrium, friction, and inertial effects. To avoid these difficulties, an inverse method was employed to determine the dynamic response of a soft, prospective biomimetic elastomer using Kolsky bar tests coupled with high-speed 3D digital image correlation. Individual tests were modeled using finite elements, and the dynamic stiffness of the elastomer was identified by matching the simulation results with test data using numerical optimization. Using this method, the average dynamic response was found to be nearly equivalent to the quasi-static response measured with stress-strain curves at compressive strains up to 60%, with an uncertainty of ±18%. Moreover, the behavior was consistent with the results in stress relaxation experiments and oscillatory tests although the latter were performed at lower strain levels.


Subject(s)
Biomimetic Materials , Compressive Strength , Elastomers , Materials Testing/methods , Finite Element Analysis , Friction , Imaging, Three-Dimensional , Materials Testing/instrumentation , Stress, Mechanical , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...