Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37760684

ABSTRACT

Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.

2.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36830250

ABSTRACT

Aliarcobacter butzleri is considered a ubiquitous microorganism and emergent pathogen, for which increasing rates of multidrug resistance have been described. In line with this, the present work aimed to evaluate for the first time the contribution of an ABC efflux system, the YbhFSR, in the resistance and virulence of this bacterium. Following the in silico characterization of the YbhFSR transporter, a mutant strain was constructed by inactivating the gene responsible for ATP-binding. After ensuring that the mutation did not have an impact on bacterial growth, the resistance profile of parental and mutant strains to different antimicrobial agents was evaluated. The results suggest that the efflux pump may influence the resistance to benzalkonium chloride, ethidium bromide, and cadmium, and several other compounds were identified as potential substrates. Regarding the evaluation of the accumulation of ethidium bromide, a slight increase was observed for the mutant strain, demonstrating a potential role of the YbhFSR efflux pump in the extrusion of toxic compounds from A. butzleri. Subsequently, the role of this efflux pump on the A. butzleri known virulence properties was evaluated, but no difference was seen among mutant and parental strains for the motility, biofilm formation ability, susceptibility to oxidative stress, or the ability to adhere and invade Caco-2 cells. However, in contrast to the parental strain, the mutant strain showed a resistance to human serum. Overall, the results support the role of efflux pumps in A. butzleri resistance to antimicrobials, highlighting the particular role of the YbhFSR system.

3.
Microorganisms ; 10(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36557662

ABSTRACT

Arcobacter butzleri is an emergent gram-negative enteropathogenic bacterium widespread in different environments and hosts. During the colonization of the gastrointestinal tract, bacteria face a variety of environmental conditions to successfully establish infection in a new host. One of these challenges is the fluctuation of oxygen concentrations encountered not only throughout the host gastrointestinal tract and defences but also in the food industry. Oxygen fluctuations can lead to modulations in the virulence of the bacterium and possibly increase its pathogenic potential. In this sense, eight human isolates of A. butzleri were studied to evaluate the effects of microaerobic and aerobic atmospheric conditions in stressful host conditions, such as oxidative stress, acid survival, and human serum survival. In addition, the effects on the modulation of virulence traits, such as haemolytic activity, bacterial motility, biofilm formation ability, and adhesion and invasion of the Caco-2 cell line, were also investigated. Overall, aerobic conditions negatively affected the susceptibility to oxygen reactive species and biofilm formation ability but improved the isolates' haemolytic ability and motility while other traits showed an isolate-dependent response. In summary, this work demonstrates for the first time that oxygen levels can modulate the potential pathogenicity of A. butzleri, although the response to stressful conditions was very heterogeneous among different strains.

4.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356744

ABSTRACT

Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.

5.
Pathogens ; 10(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34358059

ABSTRACT

Aliarcobacter butzleri is an emergent enteropathogen, showing high genetic diversity, which likely contributes to its adaptive capacity to different environments. Whether natural transformation can be a mechanism that generates genetic diversity in A. butzleri is still unknown. In the present study, we aimed to establish if A. butzleri is naturally competent for transformation and to investigate the factors influencing this process. Two different transformation procedures were tested using exogenous and isogenic DNA containing antibiotic resistance markers, and different external conditions influencing the process were evaluated. The highest number of transformable A. butzleri strains were obtained with the agar transformation method when compared to the biphasic system (65% versus 47%). A. butzleri was able to uptake isogenic chromosomal DNA at different growth phases, and the competence state was maintained from the exponential to the stationary phases. Overall, the optimal conditions for transformation with the biphasic system were the use of 1 µg of isogenic DNA and incubation at 30 °C under a microaerobic atmosphere, resulting in a transformation frequency ~8 × 10-6 transformants/CFU. We also observed that A. butzleri favored the transformation with the genetic material of its own strain/species, with the DNA incorporation process occurring promptly after the addition of genomic material. In addition, we observed that A. butzleri strains could exchange genetic material in co-culture assays. The presence of homologs of well-known genes involved in the competence in the A. butzleri genome corroborates the natural competence of this species. In conclusion, our results show that A. butzleri is a naturally transformable species, suggesting that horizontal gene transfer mediated by natural transformation is one of the processes contributing to its genetic diversity. In addition, natural transformation can be used as a tool for genetic studies of this species.

6.
Antimicrob Agents Chemother ; 65(9): e0072921, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34152822

ABSTRACT

Aliarcobacter butzleri is an emergent enteropathogen for which resistance to several classes of antimicrobial agents has been described, although the underlying mechanisms have been poorly addressed. We aimed to evaluate the contribution of the resistance-nodulation-division-type (RND) efflux system, AreABC, to drug resistance in A. butzleri. A. butzleri strains were first tested against several antimicrobials with and without an efflux pump inhibitor. Then, erythromycin-resistant strains were screened for the presence of a premature stop codon in a putative transcriptional regulator of the AreABC system, areR. Lastly, antimicrobial susceptibility and ethidium bromide (EtBr) accumulation were evaluated using an areB knockout strain and a strain overexpressing the AreABC system through areR truncation. The presence of the efflux pump inhibitor resulted in increased susceptibility to most of the antimicrobials tested. A correlation between erythromycin resistance and the presence of premature stop codons in areR was observed. The truncation of areR resulted in increased expression of the AreABC system and decreased susceptibility to various antimicrobials. In contrast, areB inactivation resulted in increased susceptibility and a higher intracellular accumulation of EtBr. In conclusion, the AreABC efflux pump plays a role in the resistance of A. butzleri to multiple drugs and is regulated by a putative transcriptional repressor, areR. Our results support the importance of efflux pumps in this bacterium's resistance to major classes of antibiotics and other antimicrobials.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests
7.
PLoS One ; 9(12): e114197, 2014.
Article in English | MEDLINE | ID: mdl-25464504

ABSTRACT

Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL-1) and one was later treated with a phage lysate (∼108 PFU mL-1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.


Subject(s)
Aquaculture/methods , Bacteriophages/physiology , Fish Diseases/prevention & control , Vibrio Infections/veterinary , Vibrio/physiology , Zebrafish/microbiology , Animals , Bacteriophages/isolation & purification , Fish Diseases/microbiology , Larva/microbiology , Vibrio/isolation & purification , Vibrio/virology , Vibrio Infections/prevention & control , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...