Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; 100(3): 331-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20074385

ABSTRACT

Dactylopius tomentosus is composed of biotypes adapted to different Cylindropuntia species. One biotype is an important biological control agent of C. imbricata in South Africa while another has the potential for the control of C. fulgida var. fulgida. These two weed species occur in sympatry in some areas of South Africa, so the introduction of the second biotype could result in hybridization, which, in turn, could impact on the biological control programs through altered host specificity and fitness of the hybrids. To anticipate what might happen, reciprocal crosses were made between the two biotypes, and the biological performance of the resultant hybrids was compared with that of each parental lineage on C. imbricata and C. f. var. fulgida. The biotypes interbred freely and reciprocally in the laboratory. Comparisons of crawler and adult female traits showed differences in performance that were dependent on the origin of the maternal and paternal genomes. However, when all traits were combined into a 'fitness index', both hybrids clearly outperformed the parental lineages. The increase in fitness shown by the hybrids over their maternal lineage was greater on the alternative host of the maternal parent than on the natural host of the maternal parent. Therefore, in areas where the two cacti occur in sympatry, hybridization between the biotypes is not expected to be detrimental to the biological control of either weed.


Subject(s)
Hemiptera/physiology , Host-Parasite Interactions/physiology , Hybridization, Genetic , Animals , Female , Fertility/physiology , Hemiptera/genetics , Male
2.
Bull Entomol Res ; 100(3): 347-58, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20003574

ABSTRACT

Host specialization to form biotypes is common among phytophagous insects, and it has been hypothesised that biotypes of Dactylopius tomentosus L. (Hemiptera: Dactylopiidae) occur. D. tomentosus is an important biological control agent for Cylindropuntia cacti when they occur as weeds. Additionally, there is uncertainty surrounding the taxonomic status of some species of Cylindropuntia. This study aimed to confirm the existence of D. tomentosus biotypes and to assess whether host specialization can help to resolve this systematic uncertainty. For this study, the host specificity and performance of ten provenances of D. tomentosus collected from C. cholla, C. fulgida var. fulgida, C. imbricata, C. f. var. mamillata, C. rosea and C. tunicata and reared on C. cholla, C. fulgida var. fulgida, C. imbricata and C. rosea were investigated. Five life-history parameters were measured including: crawler development time and survival, female development time, and the weight and number of eggs produced by females. Results revealed significant variation in host specificity with provenances either thriving, surviving or dying on the different hosts, thus demonstrating the existence of biotypes. Also, host specificity was related to host species and not to the geographic locality from which either the host or provenance was sourced. These findings suggest that the characteristics of Cylindropuntia species may differ sufficiently, there by presenting different selection pressures that induce and sustain distinct biotypes of D. tomentosus. The observed host use patterns of the biotypes separated the plant species into two groups that accorded with known phylogenetic relationships among Cylindropuntia species, suggesting that biotypes can be used to elucidate their taxonomic relatedness. Besides advancing our knowledge of the ecology and evolution of D. tomentosus, these novel findings have important implications for the biological control of Cylindropuntia species.


Subject(s)
Cactaceae/classification , Cactaceae/parasitology , Classification , Hemiptera/classification , Hemiptera/physiology , Host-Parasite Interactions , Animals , Body Weight/physiology , Female , Fertility/physiology , Hemiptera/growth & development , Kaplan-Meier Estimate , Species Specificity , Time Factors
3.
Bull Entomol Res ; 99(6): 619-27, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19302723

ABSTRACT

Cylindropuntia fulgida (Engelmann) F.M. Knuth var. fulgida (Engelmann) F.M. Knuth (Cff) (Caryophyllales: Cactaceae) is native to Mexico and Arizona and was introduced into South Africa for ornamental purposes. It subsequently became highly invasive, necessitating control. The cochineal insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), was selected as a potential biological control agent based on its restricted host range among Cylindropuntia species and previous success in controlling C. imbricata (DC.) F. Knuth (Ci). Eight D. tomentosus provenances (Cholla, Cholla E, Fulgida, Mamillata, Imbricata, Tunicata U, Tunicata V and Rosea) from Cylindropuntia species in their native ranges were reared on Cff, whilst Cholla and Imbricata were also reared on Ci. Large differences were found in the development and survival of crawlers, and in the reproductive capacity of females. Three subjective categories of provenance interaction with host plants were identified based on a fitness index (FI) calculated from data relating to crawler survival, female development time and fecundity: (i) thriving (FI > or = 1) - insects had shorter developmental times, high crawler survival and highly fecund females (Cholla); (ii) surviving (FI<1 but >0) - insects had extended development times, low crawler survival and low fecundity (Imbricata, Fulgida and Mamillata); and (iii) dying (FI = 0) - insects died before or at the second instar (Rosea, Tunicata U and Tunicata V). Cholla, therefore, is highly suitable for biological control of Cff in South Africa. In addition, Cholla thrived on Cff but only survived on Ci whilst, in contrast, Imbricata thrived on Ci but only survived on Cff. This differential ability of provenances to thrive or survive on different host plants demonstrated that host adapted biotypes of D. tomentosus exist; therefore, biotypes should be taken into account when considering this species as a biological control agent of cactus weeds.


Subject(s)
Cactaceae , Hemiptera/physiology , Pest Control, Biological/methods , Adaptation, Physiological , Animals , Feeding Behavior , Female , Fertility , Hemiptera/anatomy & histology , Hemiptera/classification , Species Specificity , Time Factors
4.
Bull Entomol Res ; 99(6): 551-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19203403

ABSTRACT

Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae) is a cochineal insect whose host range is restricted to Cylindropuntia species (Caryophyllales: Cactaceae). This insect has been utilized successfully for biological control of Cylindropuntia imbricata (Haw.) F.M. Knuth in Australia and South Africa. Despite this, its biology has not been studied previously, probably due to the widely held belief that the biology of all Dactylopius species is similar. This study investigated the life cycle and the morphological and reproductive characteristics of D. tomentosus. Results revealed some unique characteristics of D. tomentosus: (i) eggs undergo a much longer incubation period, an average of 17 days compared to <1 day in its congeners; (ii) eggs are laid singly but are retained as an egg mass secured in a mesh of waxy threads attached to the female; (iii) the developmental times of males and females are longer compared to other Dactylopius spp. due to a longer egg incubation period; (iv) D. tomentosus does not undergo parthenogenesis; (v) D. tomentosus is smaller in size than its congeners; and (vi) male mating capacity and reproductive potential were both high and variable between males. There was a significant, strong, positive relationship (r = 0.93) between female mass and fecundity, whereas the relationship between the number of females mated per male that became gravid and their fecundity was negative (r = -0.68). Besides contributing to our knowledge of this economically important species, the finding of unique characteristics of D. tomentosus biology underlines the need to study each species in this genus.


Subject(s)
Hemiptera/physiology , Animals , Body Size , Female , Fertility , Hemiptera/anatomy & histology , Hemiptera/growth & development , Life Cycle Stages , Male , Oviposition , Ovum/growth & development , Parthenogenesis , Sexual Behavior, Animal , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...