Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Parasitol Res ; 2020: 3560310, 2020.
Article in English | MEDLINE | ID: mdl-32411419

ABSTRACT

INTRODUCTION: Knockdown resistance (kdr) is strongly linked to pyrethroid insecticide resistance in Anopheles gambiae in Africa, which may have vital significance to the current increased use of pyrethroid-treated bed net programmes. The study is aimed at determining species composition, levels of insecticide resistance, and knockdown patterns in Anopheles gambiae sensu lato in areas with and areas without insecticide resistance in Teso North and Teso South subcounties, Western Kenya. MATERIALS AND METHODS: For WHO vulnerability tests, mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes (4944 at 100 mosquitoes per insecticide) which were exposed to 0.75% permethrin, 0.05% deltamethrin, and 0.1% bendiocarb using the WHO tube assay method. Species identification and kdr East gene PCRs were also performed on randomly selected mosquitoes from the collections; including adult mosquitoes (3448) sampled using standard collection methods. RESULTS: Anopheles gambiae sensu stricto were the majority in terms of species composition at 78.9%. Bendiocarb caused 100% mortality while deltamethrin had higher insecticidal effects (77%) on female mosquitoes than permethrin (71%). Susceptible Kengatunyi cluster had higher proportion of An. arabiensis (20.9%) than resistant Rwatama (10.7%). Kengatunyi mosquitoes exposed to deltamethrin had the highest KDT50 R of 8.2. Both Anopheles gambiae sensu stricto and Anopheles arabiensis had equal S allelic frequency of 0.84. Indoor resting mosquitoes had 100% mortality rate after 24 h since exposure. Overall SS genotypic frequency in Teso North and Teso South subcounties was 79.4% against 13.7% homozygous LL genotype and 6.9% heterozygous LS genotype. There was a significant difference (ρ < 0.05) in S allele frequencies between Kengatunyi (0.61) and Rwatama (0.95). Mosquito samples collected in 2013 had the highest S allelic frequency of 0.87. Discussion. Most likely, the higher the selection pressure exerted indoors by insecticidal nets, the higher were the resistance alleles. Use of pyrethroid impregnated nets and agrochemicals may have caused female mosquitoes to select for pyrethroid resistance. Different modes of action and chemical properties in different types of pyrethroids aggravated by a variety of edaphic and climatic factors may have caused different levels of susceptibility in both indoor and outdoor vectors to pyrethroids and carbamate. Species composition and populations in each collection method may have been influenced by insecticide resistance capacity in different species. Conclusions and Recommendations. Both phenotypic and genotypic insecticide resistance levels have been confirmed in Teso North and Teso South subcounties in Western Kenya. Insecticide resistance management practices in Kenya should be fast tracked and harmonized with agricultural sector agrochemical-based activities and legislation, and possibly switch to carbamate use in order to ease selection pressure on pyrethroids which are useable in insecticidal nets and indoor residual spray due to their low human toxicity. The implication of such high resistance levels in mosquitoes collected in Teso subcounties is that resistance is likely to persist and or even increase if monomolecules of permethrin and deltamethrin or both continue to be used in all net- and nonnet-based mosquito control purposes. Usage of mutually reinforcing piperonyl butoxide (PBO) that prohibits particular enzymes vital in metabolic activities inside mosquito systems and has been integrated into pyrethroid-LLINs to create pyrethroid-PBO nets is an extremely viable option.

2.
J Parasitol Res ; 2020: 9423682, 2020.
Article in English | MEDLINE | ID: mdl-32328298

ABSTRACT

INTRODUCTION: Behavioural resistance to insecticides restrains the efficacy of vector control tools against mosquito-transmitted diseases. The current study is aimed at determining the impact of insecticide resistance on major malaria vectors' biting, feeding, and resting behaviour in areas with and areas without insecticide resistance in Teso North and Teso South, Busia County, Western Kenya. METHODS: Mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes [4944] which were exposed to 0.75% permethrin and 0.05% deltamethrin using World Health Organization tube assay method. Blood meal, species identification, and kdr Eastgene PCRs were also performed on adult mosquitoes sampled using mosquito collection methods [3448]. Biting, feeding, resting, and exiting behaviours of field-collected mosquitoes from five selected clusters were analysed. RESULTS: The lowest Kdr genotypic frequency (SS) proportion was found in female Anophelines collected in Kengatunyi at 58% while Rwatama had the highest genotypic frequency at 93%, thus susceptible and resistant clusters, respectively. The peak hour for mosquito seeking a human bite was between 0300 and 0400 hrs in the resistant cluster and 0400-0500 hrs in the susceptible cluster. The heterozygous mosquitoes maintained the known 2100-2200 hrs peak hour. There was a higher proportion of homozygous susceptible vectors (86.4%) seeking humans indoor than outdoor bitters (78.3%). Mosquito blood meals of human origin were 60% and 87% in susceptible Kengatunyi and resistant Rwatama cluster, respectively. There was significant difference between homozygous-resistant vectors feeding on human blood compared to homozygous susceptible mosquitoes (p ≤ 0.05). The proportion of bovine blood was highest in the susceptible cluster. A higher proportion of homozygous-resistant anophelines were feeding and resting indoors. No heterozygous mosquito was found resting indoor while 4.2% of the mosquitoes were caught while exiting the house through the window. Discussion. A shift in resistant Anopheles gambiae sl highest peak hour of aggressiveness from 2100-2200 hrs to 0300-0400 hrs is a key change in its biting pattern. Due to the development of resistance, mosquitoes no longer have to compete against the time the human host enters into the formerly lethal chemical and or physical barrier in the form of long-lasting insecticide-treated net. No heterozygous LS mosquito rested indoors possibly due to disadvantages of heterozygosity which could have increased their fitness costs as well as energy costs in the presence of the insecticidal agents in the treated nets. Conclusions and recommendations. Out of bed biting by female mosquitoes and partial susceptibility may contribute to residual malaria transmission. Insecticide-resistant vectors have become more endophagic and anthropophillic. Hence, insecticidal nets, zooprophylaxis, and novel repellents are still useful chemical, biological, and physical barriers against human blood questing female mosquitoes. Further studies should be done on genetic changes in mosquitoes and their effects on changing mosquito behaviour.

3.
Acta Trop ; 185: 98-106, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29709631

ABSTRACT

Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, ß-pinene, ß-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources.


Subject(s)
Anopheles/physiology , Mammals , Mosquito Vectors/physiology , Odorants , Pheromones/pharmacology , Plants , Acyclic Monoterpenes , Aldehydes/pharmacology , Alkenes/pharmacology , Animals , Anopheles/drug effects , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/pharmacology , Cyclohexanols/pharmacology , Cyclohexenes/pharmacology , Female , Limonene , Malaria/transmission , Monoterpenes/pharmacology , Mosquito Control , Mosquito Vectors/drug effects , Terpenes/pharmacology , Trityl Compounds/pharmacology
4.
Parasit Vectors ; 10(1): 429, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28927428

ABSTRACT

BACKGROUND: Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS: Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS: Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS: The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.


Subject(s)
Anopheles/drug effects , Anopheles/parasitology , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology , Animals , Anopheles/genetics , Carbamates/pharmacology , Geography , Humans , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/genetics , Mutation , Organophosphates/pharmacology , Pyrethrins/pharmacology
5.
Malar J ; 7: 20, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18218148

ABSTRACT

BACKGROUND: As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. METHODS: A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. RESULTS: The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6-37.6%; p = 0.04). CONCLUSION: This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience.


Subject(s)
Health Services Research , Malaria/prevention & control , Mosquito Control/methods , Animals , Anopheles/microbiology , Bacillus thuringiensis/physiology , Ecosystem , Efficiency, Organizational , Humans , Larva/microbiology , Malaria/transmission , Pest Control, Biological/methods , Tanzania
6.
Malar J ; 5: 9, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16457724

ABSTRACT

BACKGROUND: Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up. METHODS: Community-based IVM programmes were initiated in two contrasting settings. On Rusinga Island, Western Kenya, community outreach to a marginalized rural community was achieved by University of Nairobi through a community-based organization. In Dar es Salaam, Tanzania, Ilala Municipality established an IVM programme at grassroots level, which was subsequently upgraded and expanded into a pilot scale Urban Malaria Control Programme with support from national academic institutes. RESULTS: Both programmes now access relevant expertise, funding and policy makers while the academic partners benefit from direct experience of community-based implementation and operational research opportunities. The communities now access up-to-date malaria-related knowledge and skills for translation into local action. Similarly, the academic partners have acquired better understanding of community needs and how to address them. CONCLUSION: Until sufficient evidence is provided, community-based IVM remains an operational research activity. Researchers can never directly support every community in Africa so community-based IVM strategies and tactics will need to be incorporated into undergraduate teaching programmes to generate sufficient numbers of practitioners for national scale programmes. Academic ecologists at African institutions are uniquely positioned to enable the application of practical environmental and entomological skills for malaria control by communities at grassroots level and should be supported to fulfil this neglected role.


Subject(s)
Anopheles , Community Health Planning/organization & administration , Health Promotion/organization & administration , Insect Vectors , Malaria/prevention & control , Mosquito Control/methods , Africa , Animals , Community Health Planning/economics , Community Health Planning/methods , Community Participation/methods , Humans , Malaria/transmission , Population Surveillance , Rural Population , Urban Population
7.
Malar J ; 4: 7, 2005 Jan 25.
Article in English | MEDLINE | ID: mdl-15667666

ABSTRACT

BACKGROUND: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya METHODS: The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. RESULTS: The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. CONCLUSIONS: The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence more representative) period. This trap can therefore be recommended for use by community members for passive mosquito surveillance. Nonetheless, there is still a need to develop new sampling methods for some epidemiological settings. The human landing catch should be maintained as the standard reference method for use in calibrating new methods for sampling the human biting population of mosquitoes.


Subject(s)
Anopheles/physiology , Culicidae/physiology , Insect Control/instrumentation , Insect Vectors/physiology , Animals , Anopheles/classification , Culicidae/classification , Female , Humans , Insect Control/ethics , Insect Vectors/classification , Kenya , Malaria/prevention & control , Male , Polymerase Chain Reaction/veterinary , Population Surveillance/methods
9.
Am J Trop Med Hyg ; 70(1): 33-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14971695

ABSTRACT

The mosquito sampling efficiency of a new bed net trap (the Mbita trap) was compared with that of the Centers for Disease Control miniature light trap (hung adjacent to an occupied bed net) and the human landing catch in western Kenya. Overall, the Mbita trap caught 48.7 +/- 4.8% (mean +/- SEM) the number of Anopheles gambiae Giles sensu lato caught in the human landing catch and 27.4 +/- 8.2% of the number caught by the light trap. The corresponding figures for Anopheles funestus Giles were 74.6 +/- 1.3% and 39.2 +/- 1.9%, respectively. Despite the clear differences in the numbers of mosquitoes caught by each method, both the Mbita trap and light trap catches were directly proportional to human landing catches regardless of mosquito density. No significant differences in parity or sporozoite incidence were observed between mosquitoes caught by the three methods for either An. gambiae s.l. or An. funestus. Identification of the sibling species of the An. gambiae complex by a polymerase chain reaction indicated that the ratio of An. gambiae Giles sensu stricto to An. arabiensis Patton did not vary according to the sampling method used. It is concluded that the Mbita trap is a promising tool for sampling malaria vector populations since its catch can be readily converted into equivalent human biting catch, it can be applied more intensively, it requires neither expensive equipment nor skilled personnel, and it samples mosquitoes in an exposure-free manner. Such intensive sampling capability will allow cost-effective surveillance of malaria transmission at much finer spatial and temporal resolution than has been previously possible.


Subject(s)
Anopheles , Insect Vectors , Malaria/prevention & control , Mosquito Control/methods , Animals , Bedding and Linens , Female , Humans , Kenya , Male
10.
Am J Trop Med Hyg ; 68(4 Suppl): 16-22, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12749481

ABSTRACT

The effect of permethrin-treated bed nets (ITNs) on malaria vectors was studied as part of a large-scale, randomized, controlled trial in western Kenya. Indoor resting densities of fed Anopheles gambiae s.l. and An. funestus in intervention houses were 58.5% (P = 0.010) and 94.5% (P = 0.001) lower, respectively, compared with control houses. The sporozoite infection rate in An. gambiae s.l. was 0.8% in intervention areas compared with 3.4% (P = 0.026) in control areas, while the sporozoite infection rates in An. funestus were not significantly different between the two areas. We estimated the overall transmission of Plasmodium falciparum in intervention areas to be 90% lower than in control areas. Permethrin resistance was not detected during the study period. As measured by densities of An. gambiae s.l., the efficacy of bed nets decreased if one or more residents did not sleep under a net or if bed nets had not been re-treated within six months. These results indicate that ITNs are optimally effective if used every night and if permethrin is reapplied at least biannually.


Subject(s)
Bedding and Linens , Insecticides/pharmacology , Malaria, Falciparum/prevention & control , Permethrin/pharmacology , Animals , Anopheles/parasitology , Humans , Insect Vectors , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Population Density , Seasons
11.
Malar J ; 1: 19, 2002 Dec 18.
Article in English | MEDLINE | ID: mdl-12537599

ABSTRACT

BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritized. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases.


Subject(s)
Anopheles/growth & development , Ecological Systems, Closed , Insect Vectors/growth & development , Life Cycle Stages/physiology , Animals , Anopheles/physiology , Ecology/methods , Female , Humans , Humidity , Insect Vectors/physiology , Kenya , Male , Microclimate , Plants/classification , Pupa/physiology , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...