Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 2(2): 88-101, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30283667

ABSTRACT

Secondary metabolites are a heterogeneous class of chemicals that often mediate interactions between species. The tryptophan-derived secondary metabolite, psilocin, is a serotonin receptor agonist that induces altered states of consciousness. A phylogenetically disjunct group of mushroom-forming fungi in the Agaricales produce the psilocin prodrug, psilocybin. Spotty phylogenetic distributions of fungal compounds are sometimes explained by horizontal transfer of metabolic gene clusters among unrelated fungi with overlapping niches. We report the discovery of a psilocybin gene cluster in three hallucinogenic mushroom genomes, and evidence for its horizontal transfer between fungal lineages. Patterns of gene distribution and transmission suggest that synthesis of psilocybin may have provided a fitness advantage in the dung and late wood-decay fungal niches, which may serve as reservoirs of fungal indole-based metabolites that alter behavior of mycophagous and wood-eating invertebrates. These hallucinogenic mushroom genomes will serve as models in neurochemical ecology, advancing the (bio)prospecting and synthetic biology of novel neuropharmaceuticals.

2.
Evolution ; 71(1): 51-65, 2017 01.
Article in English | MEDLINE | ID: mdl-27767208

ABSTRACT

Although fungi are one of the most diverse groups of organisms, little is known about the processes that shape their high taxonomic diversity. This study focuses on evolution of ectomycorrhizal (ECM) mushroom-forming fungi, symbiotic associates of many trees and shrubs, in the suborder Tricholomatineae of the Agaricales. We used the BiSSE model and BAMM to test the hypothesis that the ECM habit represents an evolutionary key innovation that allowed the colonization of new niches followed by an increase in diversification rate. Ancestral state reconstruction (ASR) supports the ancestor of the Tricholomatineae as non-ECM. We detected two diversification rate increases in the genus Tricholoma and the Rhodopolioid clade of the genus Entoloma. However, no increases in diversification were detected in the four other ECM clades of Tricholomatineae. We suggest that diversification of Tricholoma was not only due to the evolution of the ECM lifestyle, but also to the expansion and dominance of its main hosts and ability to associate with a variety of hosts. Diversification in the Rhodopolioid clade could be due to the unique combination of spore morphology and ECM habit. The spore morphology may represent an exaptation that aided spore dispersal and colonization. This is the first study to investigate rate shifts across a phylogeny that contains both non-ECM and ECM lineages.


Subject(s)
Agaricales/physiology , Biological Evolution , Genetic Speciation , Mycorrhizae/physiology , Agaricales/genetics , Evolution, Molecular , Mycorrhizae/genetics , Phylogeny , Tricholoma/physiology
3.
Fungal Biol ; 120(12): 1540-1553, 2016 12.
Article in English | MEDLINE | ID: mdl-27890090

ABSTRACT

A new genus and three new species of Agaricales are described from the Pakaraima Mountains of Guyana in the central Guiana Shield. All three of these new species fruit on the ground in association with species of the ectomycorrhizal (ECM) tree genus Dicymbe (Fabaceae subfam. Caesalpinioideae) and one species has been shown to form ectomycorrhizas. Multi-locus molecular phylogenetic analyses place Guyanagarika gen. nov. within the Catathelasma clade, a lineage in the suborder Tricholomatineae of the Agaricales. We formally recognize this 'Catathelasma clade' as an expanded family Catathelasmataceae that includes the genera Callistosporium, Catathelasma, Guyanagarika, Macrocybe, Pleurocollybia, and Pseudolaccaria. Within the Catathelasmataceae, Catathelasma and Guyanagarika represent independent origins of the ectomycorrhizal habit. Guyanagarika is the first documented case of an ECM Agaricales genus known only from the Neotropics.


Subject(s)
Agaricales/classification , Agaricales/isolation & purification , Fabaceae/microbiology , Mycorrhizae/classification , Mycorrhizae/isolation & purification , Guyana , Multilocus Sequence Typing , Phylogeny
4.
Evolution ; 65(7): 1862-78, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21729044

ABSTRACT

The absence of an adequate fossil record can hinder understanding the process of diversification that underlies the evolutionary history of a given group. In such cases, investigators have used ultrametric trees derived from molecular data from extant taxa to gain insights into processes of speciation and extinction over time. Inadequate taxon sampling, however, impairs such inferences. In this study, we use simulations to investigate the effect of incomplete taxon sampling on the accumulation of lineages through time for a clade of mushroom-forming fungi, the Hebelomateae. To achieve complete taxon sampling, we use a new Bayesian approach that incorporates substitute lineages to estimate diversification rates. Unlike many studies of animals and plants, we find no evidence of a slowdown in speciation. This indicates the Hebelomateae has not undergone an adaptive radiation. Rather, these fungi have evolved under a relatively constant rate of diversification since their most recent common ancestor, which we date back to the Eocene. The estimated net diversification rate (0.08-0.19 spp./lineage/Ma) is comparable with that of many plants and animals. We suggest that continuous diversification in the Hebelomateae has been facilitated by climatic and vegetation changes throughout the Cenozoic. We also caution against modeling multiple genes as a single partition when performing phylogenetic dating analyses.


Subject(s)
Agaricales/genetics , Evolution, Molecular , Phylogeny , Agaricales/physiology , Bayes Theorem , Cell Nucleus/genetics , Genetic Speciation , Genetic Variation , Models, Biological , Ribosomes/genetics , Sequence Analysis, DNA
5.
Mycorrhiza ; 20(8): 569-75, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20602121

ABSTRACT

Phylogenetic analysis of ITS sequences of members of the Craterellus cornucopioides complex (Black Trumpet mushrooms) supports the taxonomic separation of Craterellus fallax apart from C. cornucopioides, with which it has been synonymized in the past. Examination of Pinus virginiana ectomycorrhizal (ECM) root tips and sequence comparison with other insufficiently identified environmental sequences from roots of Tsuga, Quercus, and possibly Castanea supports a broad host range in North America for the ECM symbiont C. fallax. This is the first molecular confirmation of an ECM symbiont with P. virginiana, which associates with a wide diversity of ECM fungi, and the first report of a Cantharellaceae symbiont with this tree, an eastern North American two-needled pine. Three unique species in the C. cornucopioides complex are recovered based on phylogenetic analysis: C. fallax, C. cornucopioides, and an unidentified Craterellus species similar to C. fallax but smaller in stature with smaller spores.


Subject(s)
Trees/microbiology , Biodiversity , DNA, Ribosomal Spacer , Host-Parasite Interactions/physiology , North America , Phylogeny , Plant Roots/microbiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...