Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Int ; 44(7): 1668-1679, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554044

ABSTRACT

BACKGROUND: Liver ischaemia/reperfusion (I/R) injury, which is an inevitable clinical problem of liver resection, liver transplantation and haemorrhagic shock. Fibroblast growth factor 21 (FGF21) was intimately coupled with multiple metabolic processes and proved to protect against apoptosis and inflammatory response in hepatocytes during hepatic I/R injury. However, the regulatory mechanisms of FGF21 in hepatic I/R injury remains unknown. Therefore, we hypothesize that FGF21 protects hepatic tissues from I/R injury. METHODS: Blood samples were available from haemangiomas patients undergoing hepatectomy and murine liver I/R model and used to further evaluate the serum levels of FGF21 both in humans and mice. We further explored the regulatory mechanisms of FGF21 in murine liver I/R model by using FGF21-knockout mice (FGF21-KO mice) and FGF21-overexpression transgenic mice (FGF21-OE mice) fed a high-fat or ketogenic diet. RESULTS: Our results show that the circulating levels of FGF21 were robustly decreased after liver I/R in both humans and mice. Silencing FGF21 expression with FGF21-KO mice aggravates liver injury at 6 h after 75 min of partial liver ischaemia, while FGF21-OE mice display alleviated hepatic I/R injury and inflammatory response. Compared with chow diet mice, exogenous FGF21 decreases the levels of aminotransferase, histological changes, apoptosis and inflammatory response in hepatic I/R injury treatment mice with a high-fat diet. Meanwhile, ketogenic diet mice are not sensitive to hepatic I/R injury. CONCLUSIONS: The circulating contents of FGF21 are decreased during liver warm I/R injury and exogenous FGF21 exerts hepatoprotective effects on hepatic I/R injury. Thus, FGF21 regulates hepatic I/R injury and may be a key therapeutic target.


Subject(s)
Disease Models, Animal , Fibroblast Growth Factors , Liver , Mice, Knockout , Reperfusion Injury , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Animals , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Humans , Mice , Liver/pathology , Liver/metabolism , Male , Mice, Inbred C57BL , Apoptosis , Fatty Liver/pathology , Fatty Liver/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Transgenic , Female , Hepatectomy
2.
Curr Opin Pharmacol ; 63: 102193, 2022 04.
Article in English | MEDLINE | ID: mdl-35245799

ABSTRACT

Despite evidence for prominent metabolic dysfunction within multiple sclerosis (MS) lesions, the mechanisms controlling metabolic shifts in oligodendroglia are poorly understood. The cuprizone model of demyelination and remyelination is a valuable tool for assessing metabolic insult during oligodendrocyte death and myelin degradation, closely resembling the distal oligodendrogliopathy seen in Pattern III MS lesions. In this review we discuss how metabolic processes in oligodendrocytes are disrupted in both MS and the cuprizone model, as well as the evidence for mechanistic target of rapamycin (mTOR) signaling as a key regulator of oligodendroglial metabolic function and efficient remyelination.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Remyelination , Animals , Cuprizone/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Sirolimus/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Cell Rep ; 38(9): 110423, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235799

ABSTRACT

Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain.


Subject(s)
Oligodendrocyte Precursor Cells , Brain/metabolism , Cell Differentiation/genetics , Cholesterol , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Spinal Cord/metabolism , TOR Serine-Threonine Kinases/metabolism
4.
J Neurosci Res ; 100(2): 578-597, 2022 02.
Article in English | MEDLINE | ID: mdl-34811802

ABSTRACT

Traumatic brain injury (TBI) is a significant problem that affects over 800,000 children each year. As cell proliferation is disturbed by injury and required for normal brain development, we investigated how a pediatric closed head injury (CHI) would affect the progenitors of the subventricular zone (SVZ). Additionally, we evaluated the contribution of leukemia inhibitory factor (LIF) using germline LIF heterozygous mice (LIF Het), as LIF is an injury-induced cytokine, known to influence neurogenesis and gliogenesis. CHIs were performed on P20 LIF Het and wild-type (WT) mice. Ki-67 immunostaining and stereology revealed that cell proliferation increased ~250% in injured LIF Het mice compared to the 30% increase observed in injured WT mice at 48-hr post-CHI. OLIG2+ cell proliferation increased in the SVZ and white matter of LIF Het injured mice at 48-hr recovery. Using an 8-color flow cytometry panel, the proliferation of three distinct multipotential progenitors and early oligodendrocyte progenitor cell proliferation was significantly increased in LIF Het injured mice compared to WT injured mice. Supporting its cytostatic function, LIF decreased neurosphere progenitor and oligodendrocyte progenitor cell proliferation compared to controls. In highly enriched mouse oligodendrocyte progenitor cell cultures, LIF increased phospho-protein kinase B after 20 min and increased phospho-S6 ribosomal protein at 20 and 40 min of exposure, which are downstream targets of the mammalian target of rapamycin pathway. Altogether, our data provide new insights into the regulatory role of LIF in suppressing neural progenitor cell proliferation and, in particular, oligodendrocyte progenitor cell proliferation after a mild TBI.


Subject(s)
Brain Injuries, Traumatic , Oligodendrocyte Precursor Cells , Animals , Cell Proliferation/physiology , Humans , Leukemia Inhibitory Factor , Mammals , Mice , Mice, Inbred C57BL , Neurogenesis/physiology
5.
J Neurosci ; 41(40): 8321-8337, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34417330

ABSTRACT

In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.


Subject(s)
Brain/metabolism , Cuprizone/toxicity , Oligodendrocyte Precursor Cells/metabolism , Remyelination/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/drug effects , Chelating Agents/toxicity , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Rats, Sprague-Dawley , Remyelination/drug effects , TOR Serine-Threonine Kinases/genetics
6.
Endocrine ; 67(1): 95-108, 2020 01.
Article in English | MEDLINE | ID: mdl-31728756

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) is expressed in several metabolically active tissues, including liver, fat, and acinar pancreas, and has pleiotropic effects on metabolic homeostasis. The dominant source of FGF21 in the circulation is the liver. OBJECTIVE AND METHODS: To analyze the physiological functions of hepatic FGF21, we generated a hepatocyte-specific knockout model (LKO) by mating albumin-Cre mice with FGF21 flox/flox (fl/fl) mice and challenged it with different nutritional models. RESULTS: Mice fed a ketogenic diet typically show increased energy expenditure; this effect was attenuated in LKO mice. LKO on KD also developed hepatic pathology and altered hepatic lipid homeostasis. When evaluated using hyperinsulinemic-euglycemic clamps, glucose infusion rates, hepatic glucose production, and glucose uptake were similar between fl/fl and LKO DIO mice. CONCLUSIONS: We conclude that liver-derived FGF21 is important for complete adaptation to ketosis but has a more limited role in the regulation of glycemic homeostasis.


Subject(s)
Diet, Ketogenic , Fibroblast Growth Factors , Animals , Fibroblast Growth Factors/genetics , Glucose , Homeostasis , Liver , Mice , Mice, Knockout
7.
Mol Metab ; 6(11): 1395-1406, 2017 11.
Article in English | MEDLINE | ID: mdl-29107287

ABSTRACT

OBJECTIVE: Excess ethanol consumption has serious pathologic consequences. In humans, repeated episodes of binge drinking can lead to liver damage and have adverse effects on other organs such as pancreas and brain. Long term chronic consumption of ethanol can also result in progressive alcoholic liver disease and cirrhosis. Fibroblast growth factor 21 (FGF21) is a metabolic regulator with multiple physiologic functions. FGF21 is a novel biomarker for non-alcoholic fatty liver disease (NAFLD) in humans and limits hepatotoxicity in mice. Therefore, we explored the possibility that FGF21 plays a role in response to ethanol consumption in both humans and mice. METHODS: We used a binge drinking paradigm in humans to examine the effect of acute ethanol consumption on circulating FGF21. We adapted this paradigm to evaluate the acute response to ethanol in mice. We then examined the role of FGF21 on liver pathology in two models of chronic ethanol consumption in both wild type (WT) mice and mice lacking FGF21 (FGF21-KO). RESULTS: Acute ethanol consumption resulted in a robust induction of serum FGF21 after 6 h in both humans and mice. Serum ethanol peaked at 1 h in both species and was cleared by 6 h. Ethanol clearance was the same in WT and FGF21-KO mice, indicating that FGF21 does not play a major role in ethanol metabolism in a binge paradigm. When FGF21-KO mice were fed the Lieber-DeCarli diet, a high fat diet supplemented with ethanol, a higher mortality was observed compared to WT mice after 16 days on the diet. When FGF21-KO mice consumed 30% ethanol in drinking water, along with a normal chow diet, there was no mortality observed even after 16 weeks, but the FGF21-KO mice had significant liver pathology compared to WT mice. CONCLUSIONS: Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.


Subject(s)
Ethanol/pharmacology , Fibroblast Growth Factors/metabolism , Adult , Animals , Fatty Liver, Alcoholic/metabolism , Female , Fibroblast Growth Factors/biosynthesis , Humans , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/metabolism , Longitudinal Studies , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation
8.
Nurse Educ Today ; 32(2): 178-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21885170

ABSTRACT

This paper presents qualitative findings emergent from a participatory action research (PAR) study focused on developing service user and carer involvement in a university setting. The involvement of these experts by experience in practitioner education for health and social care, and nursing in particular, is now an international phenomenon. Adhering to the philosophy and practices of PAR, the project and the writing of this paper have been collectively produced. Data has been organised using simple thematic analysis into three broad themes accounting for different ways in which participating service users and carers obtain a sense of value from their involvement. We have titled these themes: a more positive sense of self; social and relational benefits; altruism in activism. Drawing on these participant narratives we develop an understanding of the relationship between involvement and reward that does not simply reflect value in payment.


Subject(s)
Attitude of Health Personnel , Caregivers/psychology , Education, Professional/methods , Patient Participation/psychology , Reward , Altruism , Education, Nursing/methods , Health Personnel/education , Health Services Research , Humans , Nursing Education Research , Social Work/education
SELECTION OF CITATIONS
SEARCH DETAIL
...