Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896228

ABSTRACT

This study presents a novel approach to fabricate silver nanoparticles (AgNPs) using the poisonous plant, Holigarna arnottiana leaf extract. The formation of AgNPs was confirmed by a color change from green to dark brown and validated by UV analysis. FTIR analysis identified functional groups on the AgNPs, while Zeta potential analysis assessed their stability. TEM analysis established an average diameter of 18 nm and a spherical morphology for the nanoparticles. LC MS analysis coupled with database searches revealed the presence of diverse bioactive compounds, including flavonoids, nucleotides, dipeptides, enzymes, and glycosides. These compounds are postulated to act as reducing agents in the leaf extract-mediated synthesis process. Moreover, the bio-fabricated AgNPs exhibited noteworthy anticancer properties against DLA cells. In addition, AgNPs displayed substantial antimitotic effects in an assay involving Allium cepa root cells. These findings underscore the potential of the AgNPs as cytotoxic agents. The biosynthesized AgNPs showed antimicrobial activity against various bacterial pathogens, including Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Furthermore, the AgNPs exhibited outstanding radical-scavenging properties in the DPPH assay, suggesting their potential application in antioxidant therapies. The study collectively highlights the successful synthesis of AgNPs through a green, biocompatible approach, and demonstrates their promising potential for anticancer, antimitotic, and radical-scavenging applications.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36978431

ABSTRACT

Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant Uvaria narum, commonly called narumpanal. The nanoparticles were characterised by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM analysis showed AgNPs are highly crystalline and spherical with an average diameter of 7.13 nm. The outstanding catalytic activity of AgNPs was demonstrated by employing the reduction of 4-nitrophenol to 4-aminophenol. The AgNPs showed antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay. AgNPs demonstrated anticancer activity against Dalton's lymphoma ascites cells (DLA cells) in trypan blue assay and cytotoxicity against three fish cell lines: Oreochromis niloticus liver (onlL; National Repository of Fish Cell Lines, India (NRFC) Accession number-NRFC052) cells, Cyprinus carpio koi fin (CCKF; NRFC Accession number-NRFC007) cells and Cyprinus carpio gill (CyCKG; NRFC Accession number-NRFC064). Furthermore, the AgNPs demonstrated their ability to inhibit pathogenic microorganisms, Staphylococcus aureus, and Escherichia coli. The results from the study displayed green synthesised AgNPs exhibit antiangiogenic activity, cytotoxicity, antimicrobial and catalytic properties, which are crucial characteristics of a molecule with excellent clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...