Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(5): e0125652, 2015.
Article in English | MEDLINE | ID: mdl-25946221

ABSTRACT

HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs) to target a highly conserved sequence in the transactivation response element (TAR) of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.


Subject(s)
DNA Restriction Enzymes/pharmacology , DNA, Viral/genetics , HIV-1/genetics , Proviruses/genetics , Response Elements/genetics , Binding Sites/genetics , Cell Line, Tumor , Conserved Sequence/genetics , DNA Damage/drug effects , HIV Infections/genetics , HeLa Cells , Humans , Virus Integration
2.
PLoS One ; 9(6): e98810, 2014.
Article in English | MEDLINE | ID: mdl-24886930

ABSTRACT

There is enormous interest in studying HIV pathogenesis for improving the treatment of patients with HIV infection. HIV infection has become one of the best-studied systems for understanding how a virus can hijack a cell. To help facilitate discovery, we previously built HIVToolbox, a web system for visual data mining. The original HIVToolbox integrated information for HIV protein sequence, structure, functional sites, and sequence conservation. This web system has been used for almost 40,000 searches. We report improvements to HIVToolbox including new functions and workflows, data updates, and updates for ease of use. HIVToolbox2, is an improvement over HIVToolbox with new functions. HIVToolbox2 has new functionalities focused on HIV pathogenesis including drug-binding sites, drug-resistance mutations, and immune epitopes. The integrated, interactive view enables visual mining to generate hypotheses that are not readily revealed by other approaches. Most HIV proteins form multimers, and there are posttranslational modification and protein-protein interaction sites at many of these multimerization interfaces. Analysis of protease drug binding sites reveals an anatomy of drug resistance with different types of drug-resistance mutations regionally localized on the surface of protease. Some of these drug-resistance mutations have a high prevalence in specific HIV-1 M subtypes. Finally, consolidation of Tat functional sites reveals a hotspot region where there appear to be 30 interactions or posttranslational modifications. A cursory analysis with HIVToolbox2 has helped to identify several global patterns for HIV proteins. An initial analysis with this tool identifies homomultimerization of almost all HIV proteins, functional sites that overlap with multimerization sites, a global drug resistance anatomy for HIV protease, and specific distributions of some DRMs in specific HIV M subtypes. HIVToolbox2 is an open-access web application available at [http://hivtoolbox2.bio-toolkit.com].


Subject(s)
Anti-HIV Agents/chemistry , Drug Resistance, Viral/genetics , HIV/drug effects , Human Immunodeficiency Virus Proteins/chemistry , Mutation , Software , Amino Acid Sequence , Binding Sites/genetics , DNA Mutational Analysis , Databases, Genetic , HIV/genetics , HIV/metabolism , Human Immunodeficiency Virus Proteins/drug effects , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Internet , Protein Conformation , Protein Multimerization , Protein Processing, Post-Translational , Sequence Analysis, Protein
3.
PLoS One ; 9(3): e92877, 2014.
Article in English | MEDLINE | ID: mdl-24675726

ABSTRACT

We present a new approach for pathogen surveillance we call Geogenomics. Geogenomics examines the geographic distribution of the genomes of pathogens, with a particular emphasis on those mutations that give rise to drug resistance. We engineered a new web system called Geogenomic Mutational Atlas of Pathogens (GoMAP) that enables investigation of the global distribution of individual drug resistance mutations. As a test case we examined mutations associated with HIV resistance to FDA-approved antiretroviral drugs. GoMAP-HIV makes use of existing public drug resistance and HIV protein sequence data to examine the distribution of 872 drug resistance mutations in ∼ 502,000 sequences for many countries in the world. We also implemented a broadened classification scheme for HIV drug resistance mutations. Several patterns for geographic distributions of resistance mutations were identified by visual mining using this web tool. GoMAP-HIV is an open access web application available at http://www.bio-toolkit.com/GoMap/project/


Subject(s)
Communicable Diseases/etiology , Databases, Genetic , Genome, Microbial , Genomics/methods , Mutation , Population Surveillance/methods , Web Browser , Geography , Global Health , HIV Infections , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...