Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(9): 3661-3673, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37602778

ABSTRACT

Peri-implantitis is a substantially prevailing condition. A potential risk factor for peri-implantitis is Ti implant corrosion. During inflammation, substantial quantities of reactive oxygen species (ROS) secretion and local acidification occur. Little is known about the interaction between the inflammatory and corrosion products on Ti surface corrosion. Therefore, the objective of the current study was to evaluate the synergistic effect of hydrogen peroxide (H2O2), lactic acid, and Ti ions on Ti corrosion. Twenty-seven commercially pure Ti samples were polished (Ra ≈ 45 nm) and divided into 9 groups as a function of electrolyte: (1) artificial saliva (AS) as control (C), (2) AS + Ti ions 20 ppm (Ti), (3) AS + lactic acid (pH = 5.5) (L), (4) AS + lactic acid + Ti ions 20 ppm (TiL), (5) AS + H2O2 0.5 mM (HP0.5), (6) AS + H2O2 1.0 mM (HP1.0), (7) AS + H2O2 0.5 mM + Ti ions 20 ppm (HP0.5Ti), (8) AS + H2O2 0.5 mM + lactic acid (HP0.5L), and (9) AS + H2O2 0.5 mM + Ti ions 20 ppm + lactic acid (HP0.5TiL). Electrochemical tests were performed following ASMT guidelines. Based on Tafel's method, current density (icorr) and corresponding potential (Ecorr) were acquired from potentiodynamic curves. Using electrochemical intensity spectroscopy (EIS), Nyquist and Bode plots were derived. Using a modified Randles circuit, charge transfer resistance (Rct) and capacitance (Cdl) were estimated. Based on open-circuit potential data, groups C and Ti had the lowest potentials (around -0.3 and -0.4 V vs SCE, respectively), indicating a lower passivation tendency compared to the other groups. From potentiodynamic curves, groups HP0.5 and HP1.0 increased icorr the most. From EIS data, groups HP0.5 and HP1.0 demonstrated the lowest impedance and phase angle on the Bode plot, indicating the highest corrosion kinetics. Based on EIS modeling, the combination of Ti ions, lactic acid, and H2O2 (group HP0.5TiL) significantly decreased Rct (p < 0.05). In conclusion, the concurrent presence of Ti ions, lactic acid, and H2O2 in the vicinity of the Ti surface increased the corrosion kinetics. High corrosion may produce more Ti products in the peri-implant tissues, which may increase the potential risk of peri-implantitis.


Subject(s)
Dental Implants , Peri-Implantitis , Humans , Hydrogen Peroxide , Titanium , Ions , Lactic Acid
2.
Eur Endod J ; 8(1): 79-89, 2023 01.
Article in English | MEDLINE | ID: mdl-36748441

ABSTRACT

OBJECTIVE: According to the American Association of Endodontists (AAE), 22 million endodontic procedures have been performed annually. Root canal treatment is needed to prevent infection and restore function when a tooth is severely infected or decayed. This procedure is the only way to preserve the natural tooth and avoid artificial replacement (implant, denture, etc.). The current study aims to develop an electrochemical reamer (EC-Reamer or EC-R) that can help to disinfect the canal system and thus improve the success rate of root canal treatment. METHODS: The COMSOL Multiphysics software was utilized to simulate the experimental setup and confirm the current flow in the electrolyte. The benchtop experimental approach follows a specific electrochemical protocol, (i) open circuit potential to monitor the electrochemical stabilization and (ii) potentiostatic scan at -9.0 V as the treatment stage. Identification of feasible reference electrode (RE) and insulation material for the exploratory benchtop studies considered platinum (Pt) and gold (Au) wire as the REs and hot melt adhesive (HMA) and liquid tape as the insulation materials. The antimicrobial effects of EC-R were analysed using Enterococcus faecalis (E. faecalis). One-way ANOVA with the Tukey post hoc test and a significance level of P<0.05 is used to compare the groups with an experimental duration of 60 seconds. RESULTS: The findings showed that magnitude and current fluctuations created by Pt wire are promising when compared to Au wire, while Pt-HMA pair is chosen considering Pt's good electrochemical inertness and HMA's easy handling, availability, and non-hazardous features. The use of potentiostatic duration of 1 s and 3 s resulted in >99.99% E. faecalis reduction. Duration at 5 s and above resulted in a total bacterial kill. Statistical analysis confirmed a significant difference among the groups tested with commercial and custom-built potentiostats. CONCLUSION: The outcome provided preliminary data for developing an EC-R prototype to enhance the antimicrobial effect during root canal treatment potentially. (EEJ-2022-01-04).


Subject(s)
Anti-Infective Agents , Dental Pulp Cavity , Root Canal Therapy
3.
Nanomedicine ; 14(3): 951-963, 2018 04.
Article in English | MEDLINE | ID: mdl-29339190

ABSTRACT

Despite the technological improvements in orthopedic joint replacement implants, wear and corrosion products associated with the metal components of these implants may result in adverse local tissue and perhaps systemic reactions and toxicities. The current review encompasses a literature review of the local and systemic toxicity studies concerning the effect of CoCrMo wear debris released from wear and corrosion of orthopedic implants and prostheses. Release of metallic debris is mainly in the form of micro- and nano-particles, ions of different valences, and oxides composed of Co and Cr. Though these substances alter human biology, their direct effects of these substances on specific tissue types remain poorly understood. This may partially be the consequence of the multivariate research methodologies employed, leading to inconsistent reports. This review proposes the importance of developing new and more appropriate in-vitro methodologies to study the cellular responses and toxicity mediated by joint replacement wear debris in-vivo.


Subject(s)
Hip Prosthesis , Metals/toxicity , Prosthesis Failure , Chromium/toxicity , Cobalt/toxicity , Corrosion , Humans , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...