Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cleve Clin J Med ; 90(12): 717-718, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040440
2.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35568036

ABSTRACT

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Subject(s)
Interferons , Virulence Factors , Animals , Antiviral Agents , Calcium Signaling , Epithelial Cells/metabolism , Interferons/metabolism , Mice , Virulence Factors/metabolism
3.
Bioengineering (Basel) ; 9(1)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35049748

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is a noninvasive, reliable, and efficient method to analyze the barrier integrity of in vitro tissue models. This well-established tool is used most widely to quantify the transendothelial/epithelial resistance (TEER) of Transwell-based models cultured under static conditions. However, dynamic culture in bioreactors can achieve advanced cell culture conditions that mimic a more tissue-specific environment and stimulation. This requires the development of culture systems that also allow for the assessment of barrier integrity under dynamic conditions. Here, we present a bioreactor system that is capable of the automated, continuous, and non-invasive online monitoring of cellular barrier integrity during dynamic culture. Polydimethylsiloxane (PDMS) casting and 3D printing were used for the fabrication of the bioreactors. Additionally, attachable electrodes based on titanium nitride (TiN)-coated steel tubes were developed to perform EIS measurements. In order to test the monitored bioreactor system, blood-brain barrier (BBB) in vitro models derived from human-induced pluripotent stem cells (hiPSC) were cultured for up to 7 days. We applied equivalent electrical circuit fitting to quantify the electrical parameters of the cell layer and observed that TEER gradually decreased over time from 2513 Ω·cm2 to 285 Ω·cm2, as also specified in the static control culture. Our versatile system offers the possibility to be used for various dynamic tissue cultures that require a non-invasive monitoring system for barrier integrity.

4.
Curr Protoc Stem Cell Biol ; 55(1): e122, 2020 12.
Article in English | MEDLINE | ID: mdl-32956578

ABSTRACT

Translating basic biological knowledge into applications remains a key issue for effectively tackling neurodegenerative, neuroinflammatory, or neuroendocrine disorders. Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) still poses a demanding challenge for drug development targeting central nervous system diseases. Validated in vitro models of the BBB could facilitate effective testing of drug candidates targeting the brain early in the drug discovery process during lead generation. We here review the potential of mono- or (isogenic) co-culture BBB models based on brain capillary endothelial cells (BCECs) derived from human-induced pluripotent stem cells (hiPSCs), and compare them to several available BBB in vitro models from primary human or non-human cells and to rodent in vivo models, as well as to classical and widely used barrier models [Caco-2, parallel artificial membrane permeability assay (PAMPA)]. In particular, we are discussing the features and predictivity of these models and how hiPSC-derived BBB models could impact future discovery and development of novel CNS-targeting therapeutics. © 2020 The Authors.


Subject(s)
Blood-Brain Barrier , Drugs, Investigational/pharmacokinetics , Induced Pluripotent Stem Cells/cytology , Models, Biological , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Brain/cytology , Coculture Techniques , Drug Discovery , Endothelial Cells/cytology , Humans , Permeability
5.
Acta Biomater ; 75: 183-199, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29883810

ABSTRACT

The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. However, because of the highly organized nature of the stromal matrix, the attempts to reproduce corneal stroma might follow a scar model. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). Within SCC, with applied compression and force extension, collagen microfibres and corneal stromal cells (CSCs) are arranged orderly, while collagen fibres and CSCs in CC are randomly arranged. Dehydrated SCC has higher tensile strength than dehydrated CC. Hydrated SCC has similar transparency with hydrated native corneal stroma. Compared with those cultured on tissue culture plates (TCP), down-regulation of the genes and proteins of cytoskeleton, activation, proliferation, collagen and TRPV4, up-regulation of proteoglycans, gap junction proteins and TRPA1 are in CSCs of CC and SCC. Moreover, SCC and CC grafts displayed biocompatibility and integration with host corneal tissue after rabbit intra-corneal stromal transplantation by wk 6 under slit lamp microscopy, in vivo confocal microscopy and histological examination. The SCC model facilitates the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues. STATEMENT OF SIGNIFICANCE: The development of functional therapies for corneal repair and regeneration is a pressing issue. Corneal stroma provides the principal functions of the cornea. Here, we have developed a protocol for the efficient generation of a cell-laden and orthogonal-multilayer tissue-engineered (TE) corneal stroma, which is induced by the mechanical effects of compressed collagen (CC) or stretched compressed collagen (SCC). These models facilitate the construction of physiological feature TE corneal stroma, which serves as a foundation for physiological TE construction of other tissues and helps to reverse fibrosis pathologies in general.


Subject(s)
Collagen/chemistry , Corneal Injuries , Corneal Stroma , Tissue Engineering , Animals , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Injuries/therapy , Corneal Stroma/metabolism , Corneal Stroma/pathology , Corneal Stroma/transplantation , Eye Proteins/biosynthesis , Rabbits , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/transplantation
6.
Cell Reprogram ; 19(6): 363-371, 2017 12.
Article in English | MEDLINE | ID: mdl-29215942

ABSTRACT

Induced pluripotent stem cells (iPSCs) from somatic cells can be reprogrammed to provide an unlimited cell resource showing great potential in disease modeling and regenerative medicine. However, the traditional method for reprogramming cells into iPSCs using genome-integrating retro- or lenti-viruses remain an obstacle for its application in clinical settings. We tried the possibility to generate pre-iPSCs from human adipose-derived stem cells (ADSCs) by nongenetic reprogramming using recombinant cell-penetrating proteins OCT4/KLF4/SOX2 (PTD-OKS) and the cocktail of small molecules (VCFZ). Our experimental results demonstrated that PTD-OKS in combination with VCFZ (VCFZ+OKS) could significantly enhance the stemness of ADSCs and easily get pre-iPSCs after 25 days treatments. The pre-iPSCs showed similar morphology to iPSCs, which were positive for alkaline phosphatase staining. Furthermore, RT-polymerase chain reaction analysis showed that VCFZ+OKS could significantly upregulate the expression of OCT4, KLF4, SOX2, and NANOG gene after 25 days treatment. And immunofluorescence staining also showed that the protein makers of pluripotent stem cell were positively expressed in VCFZ+OKS treated group. Our data suggest that nongenetic-mediated reprogramming from ADSCs may be a promising stem cell sources for cell therapy in the near future.


Subject(s)
Adipocytes/cytology , Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Recombinant Proteins/metabolism , Small Molecule Libraries/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adult , Cell Differentiation , Cells, Cultured , Drug Combinations , Female , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Recombinant Proteins/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...