Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e24491, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318042

ABSTRACT

In this paper, we outline the development of stoichiometric chalcostibite, CuSbS2 thin films, from a single bath by pulse electrodeposition for its application as a photocathode in photoelectrochemical cells (PEC). The Cu/Sb precursor molar ratio of the deposition bath was varied to obtain stoichiometric CuSbS2 thin films. The optimized deposition and dissolution potentials were -0.72 V and -0.1 V vs saturated calomel electrode, respectively. The formation of CuSbS2 was analyzed using different characterization tools. X-ray diffraction and Raman results showed the formation of the pure chalcostibite phase from a precursor bath with molar ratio Cu/Sb = 0.41. The heterostructure CuSbS2/CdS/Pt was tested as a photocathode in the PEC. The energy positions of the conduction and valence bands were estimated from the Mott Schottky plots. The conduction band and valence band offset of CuSbS2/CdS heterojunction were 0.1 eV and 1.04 eV, respectively. The electric field created in the junction reduced the recombination of the electron/hole pairs and improved charge transfer in the interface. The heterostructure CuSbS2/CdS/Pt demonstrated an improved photocurrent density of 3.4 mA cm-2 at 0 V vs reversible hydrogen electrode. The PEC efficiency obtained from the CuSbS2/CdS heterojunction was 0.56 %. Therefore, we demonstrated the feasibility of an inexpensive technique like electrodeposition for the development of an efficient earth-abundant photocathode.

2.
ACS Appl Mater Interfaces ; 13(10): 11833-11844, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33651611

ABSTRACT

In perovskite solar cells (PSCs), the vertical inhomogeneities which include uneven grains, voids, and grain boundaries are closely linked to the underlying charge transport layer which controls the nucleation and grain growth in the perovskite film. Herein, the vertical inhomogeneity of perovskite films in the device structure is analyzed by depth-dependent photoluminescence (PL) achieved with different excitation wavelengths. An analytical representation between vertical inhomogeneity and depth-dependent PL, parametrized with a factor, b, is introduced to understand the relation between inhomogeneity and charge recombination. Lower values of b correlate to lower vertical inhomogeneity and hence reduced recombination. The analytical representation is validated in two sets of devices that show remarkable differences in perovskite film morphology, device based on mesoporous TiO2 and planar SnO2. By exploring the morphological properties and the PL emission from different depths across the device structures, we show that the lower vertical inhomogeneity leads to more efficient charge carrier extraction in planar SnO2-based devices. Moreover, the SnO2-based devices exhibit lower Urbach energy, which concurs with the slow transient photovoltage decay, suggesting less defects and recombination losses. This work provides a broader understanding of the impact of vertical inhomogeneity on the charge extraction efficiency and presents a methodology to study quantitatively the inhomogeneity of perovskite films in device structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...