Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genomics ; 45(12): 1587-1598, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831405

ABSTRACT

BACKGROUND: Maize has great importance in South Sudan as the most cultivated cereal after sorghum; however, numerous challenges are encountered in its production. To raise maize production, it is critical to exploit the wealth of its genetic variation for grain yield enhancement. OBJECTIVE: This study aimed to conduct association analysis to identify specific simple sequence repeat (SSR) markers associated with quantitative agronomic traits. METHODS: Genetic variation and population structure were investigated among 31 maize accessions by association analysis using 50 SSR markers and seven quantitative agronomic traits. RESULTS: The genotypes exhibited abundant genetic variation, and 418 alleles were detected with an average of 8.4 alleles per locus. The average genetic diversity, major allele frequency, and polymorphic information content were 0.754, 0.373, and 0.725, respectively. The population structure based on 50 SSR markers divided the maize accessions into two main groups and an admixed group without considering their descent. Association analysis was performed using a general linear model (Q GLM) and a mixed linear model (Q + K MLM). Q GLM detected 44 trait-marker associations involving 23 SSR markers. Q + K MLM detected four marker-trait associations involving three SSR markers (umc2286, umc1303, umc1429) associated with days to tasseling, days to silking, leaf length, and leaf width. CONCLUSIONS: The detected significant SSR markers related to agronomic traits could be useful for future genetic studies. Additionally, markers affecting several agronomic traits and overlapped SSR markers require further testing on a wide range of genotypes prior to their consideration as candidate markers for marker assisted selection for South Sudan maize improvement.


Subject(s)
Microsatellite Repeats , Zea mays , Zea mays/genetics , South Sudan , Phenotype , Gene Frequency , Microsatellite Repeats/genetics , Edible Grain/genetics
2.
Plants (Basel) ; 11(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297809

ABSTRACT

Maize is one of the leading global cereals, and in South Sudan maize cultivation occurs in nearly all of the country's agro-ecological zones. Despite its widespread cultivation, farmers in South Sudan depend on undeveloped varieties, which results in very low yields in the field. In the current study, 27 simple sequence repeat (SSR) markers were used to investigate genetic diversity and population structures among 37 landrace maize accessions collected from farmers' fields in South Sudan. In total, 200 alleles were revealed with an average of 7.4 alleles per locus and a range from 3.0 to 13.0 alleles per locus. The observed heterozygosity values ranged from 0.06 to 0.91 with an average of 0.35. High polymorphic information content (PIC) values were identified with a mean of 0.69, which indicates the informativeness of the chosen SSR loci. Genetic structure analysis revealed a moderate genetic differentiation among the maize populations with a fixation index of 0.16, while there was very high genetic differentiation within the groups of populations of three regions with a mean fixation index (F) of 0.37. An unweighted pair group method with an arithmetic mean (UPGMA) dendrogram clustered the 37 maize accessions into three groups with 43% genetic similarity. The clustering pattern of the maize accessions was moderately consistent with their collection area. The findings of this study will provide maize breeders with a better understanding of maize diversification as well as a reserve of genetic resources for use in the selection of advantageous and useful resources for the development of maize varieties in South Sudan.

SELECTION OF CITATIONS
SEARCH DETAIL
...