Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200907

ABSTRACT

Due to natural tolerance to most widely used herbicides for grass weed control, prosulfocarb as pre-emergence or early post-emergence herbicide and mesosulfuron + iodosulfuron as post-emergence herbicide are the mainstays of any chemical control program for Vulpia myuros in Denmark. However, farmers often report variable efficacy of these herbicides on V. myuros compared to other grass weeds. Dose-response experiments were conducted to evaluate the performance of prosulfocarb and mesosulfuron + iodosulfuron on V. myuros. Prosulfocarb was sprayed at different plant growth stages to study the influence of plant growth stage on the performance of prosulfocarb on V. myuros in comparison with the more susceptible grass weed species Apera spica-venti. Doses causing 50% reduction in response variable (ED50) were estimated from the dose-response analysis. The ED50 values revealed a higher tolerance of V. myuros to prosulfocarb and mesosulfuron + iodosulfuron than A. spica-venti. The relative difference in the effectiveness of prosulfocarb between V. myuros and A. spica-venti was constant among plant growth stages studied. The highest levels of V. myuros control were achieved when prosulfocarb was sprayed pre-emergence (BBCH 00), while the control substantially declined at later growth stages. The results from the current study document the tolerance of V. myuros to prosulfocarb and mesosulfuron + iodosulfuron and highlight the importance of optimization of prosulfocarb spray timing for achieving maximum control of V. myuros.

2.
Plants (Basel) ; 9(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167487

ABSTRACT

Vulpia myuros has become an increasing weed problem in winter cereals in Northern Europe. However, the information about V. myuros and its behavior as an arable weed is limited. Field and greenhouse experiments were conducted in 2017/18 and 2018/19, at the Department of Agroecology in Flakkebjerg, Denmark to investigate the emergence, phenological development and growth characteristics of V. myuros in monoculture and in mixture with winter wheat, in comparison to Apera spica-venti, Alopecurus myosuroides and Lolium multiflorum. V. myuros emerged earlier than A. myosuroides and A. spica-venti but later than L. multiflorum. Significant differences in phenological development were recorded among the species. Overall phenology of V. myuros was more similar to that of L. multiflorum than to A. myosuroides and A. spica-venti. V. myuros started seed shedding earlier than A. spica-venti and L. multiflorum but later than A. myosuroides. V. myuros was more sensitive to winter wheat competition in terms of biomass production and fecundity than the other species. Using a target-neighborhood design, responses of V. myuros and A. spica-venti to the increasing density of winter wheat were quantified. At early growth stages "BBCH 26-29", V. myuros was suppressed less than A. spica-venti by winter wheat, while opposite responses were seen at later growth stages "BBCH 39-47" and "BBCH 81-90". No significant differences in fecundity characteristics were observed between the two species in response to increasing winter wheat density. The information on the behavior of V. myuros gathered by the current study can support the development of effective integrated weed management strategies for V. myuros.

3.
Plants (Basel) ; 9(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503340

ABSTRACT

Recently, Vulpia myuros has become a problematic grass weed species in parts of Europe. It is most common in no-till cropping systems. The inherent tolerance to several selective grass weed herbicides is of serious concern to the successful management of V. myuros in arable farming. Here, we reviewed the available knowledge about the biology of V. myuros to identify knowledge gaps and assess management efforts to identify best practices for control. V. myuros is a winter-annual species producing seeds with a short dormancy that can germinate at a wide range of conditions. Seed longevity in the soil is short. Little information is available on the influence of V. myuros on crop yield but some results suggest that yield losses can be significant. The findings provide a better understanding of the weedy characteristics of V. myuros and highlight that management strategies in Europe need to be diversified and integrate preventive and cultural control methods. Finally, we identify some of the management tools that should be considered to minimize the impact of V. myuros on European farming and future needs for research to develop sustainable integrated weed management strategies.

4.
Sensors (Basel) ; 18(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772666

ABSTRACT

This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.


Subject(s)
Neural Networks, Computer , Poaceae/growth & development , Polygonum/growth & development , Image Processing, Computer-Assisted , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Poaceae/anatomy & histology , Poaceae/physiology , Polygonum/anatomy & histology , Polygonum/physiology
5.
Environ Toxicol Chem ; 27(6): 1302-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18177209

ABSTRACT

Herbicides may drift onto road verges or natural areas adjacent to arable fields and affect nontarget plants. The effect of low doses of mecoprop-P on the competitive interactions and plant community dynamics was investigated in a model system using Capsella bursa-pastoris and Geranium dissectum as test plants. Dose-response experiments on single species showed that compared to G. dissectum, C. bursa-pastoris was more affected by mecoprop-P. Consequently, we expected that G. dissectum would outcompete C. bursa-pastoris when mecoprop-P was applied at a low dose in the competition experiment. Indeed, mecoprop-P had a significant effect on the interspecific competitive ability of both C. bursa-pastoris and G. dissectum. Our previous expectation, however, was not met: The interspecific competitive ability of both species increased significantly with the dose of the herbicide, and it was predicted that C. bursa-pastoris and G. dissectum are more likely to coexist in natural habitats with low concentrations of the herbicide compared to natural habitats with relatively high concentrations. The results from the dose-response experiments on the single species and the more laborious competition experiment approach, which is assumed to mimic the dynamics of plant communities more closely, show considerable discrepancies even though the experiments were performed at the same time and in the same greenhouse. This finding generally reduces the credibility of using single-species tests in ecological risk assessment of herbicide use.


Subject(s)
Capsella/drug effects , Geranium/drug effects , Herbicides/pharmacology , Models, Biological , Poaceae/drug effects , Soil/analysis , Desiccation
6.
Environ Toxicol Chem ; 26(1): 149-56, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17269472

ABSTRACT

Binary-mixture studies often are conducted with the aim of elucidating the effect of one specific chemical on the biological action of another. The results can be interpreted in relation to reference models by the use of response-surface analyses and isobolograms. The amount of data needed for these analyses is, however, extensive, and the experiments therefore rarely are repeated. In the present study, we investigate the reproducibility of isobole shapes of binary-mixture toxicity experiments in terms of deviation from the reference model of concentration addition (CA), dose-level dependence, and isobole asymmetry. We use data from four herbicide mixtures tested in three to five independent experiments on the aquatic test plant Lemna minor and the terrestrial plant Tripleurospermum inodorum. The results showed that the variation both within and among experiments was approximately half the size for the aquatic test system compared to the terrestrial system. As a consequence, a consistent deviation from CA could be obtained in three of four herbicide mixtures for L. minor, whereas this was only the case for one or two of the herbicide mixtures tested on T. inodorum. For one mixture on T. inodorum, both CA synergism and antagonism were detected. Dose-dependent effects could not be repeated consistently, just as the asymmetry found in some isoboles could not. The study emphasizes the importance of repeating mixture toxicity experiments, especially for test systems with large variability, and using caution when drawing biological conclusions from the test results.


Subject(s)
Toxicity Tests , Plants/drug effects , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...