Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antimicrob Chemother ; 76(11): 2854-2862, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34379746

ABSTRACT

BACKGROUND: The first potential focus for artemisinin resistance in South America was recently confirmed with the presence of the C580Y mutation in the Plasmodium falciparum kelch 13 gene (pfk13) in Guyana. OBJECTIVES: This study aimed to strengthen pfk13 monitoring in the Amazon basin countries, to compile the available data and to evaluate the risk of spreading of mutations. METHODS: Sanger sequencing was done on 862 samples collected between 1998 and 2019, and a global map of pfk13 genotypes available for this region was constructed. Then, the risk of spreading of mutations based on P. falciparum case importation between 2015 and 2018 within countries of the Amazon basin was evaluated. RESULTS: No additional pfk13 C580Y foci were identified. Few mutations (0.5%, 95% CI = 0.3%-0.8%) in the propeller domain were observed in the general parasite population of this region despite a high proportion of K189T mutations (49.1%, 95% CI = 46.2%-52.0%) in the non-propeller domain. Case information revealed two patterns of intense human migration: Venezuela, Guyana and the Roraima State in Brazil; and French Guiana, Suriname and the Amapá State in Brazil. CONCLUSIONS: There are few pfk13 mutant foci, but a high risk of dispersion in the Amazon basin, mainly from the Guiana Shield, proportionate to mining activities. Therefore, access to prompt diagnosis and treatment, and continuous molecular monitoring is essential in these geographical areas.


Subject(s)
Malaria, Falciparum , Mutation , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Brazil , Drug Resistance , Humans , Kelch Repeat , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
2.
Elife ; 92020 05 12.
Article in English | MEDLINE | ID: mdl-32394893

ABSTRACT

Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016-2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.


All recommended treatments against malaria include a drug called artemisinin or some of its derivatives. However, there are concerns that Plasmodium falciparum, the parasite that causes most cases of malaria, will eventually develop widespread resistance to the drug. A strain of P. falciparum partially resistant to artemisinin was seen in Cambodia in 2008, and it has since spread across Southeast Asia. The resistance appears to be frequently linked to a mutation known as pfk13 C580Y. Southeast Asia and Amazonia are considered to be hotspots for antimalarial drug resistance, and the pfk13 C580Y mutation was detected in the South American country of Guyana in 2010. To examine whether the mutation was still circulating in this part of the world, Mathieu et al. collected and analyzed 854 samples across Guyana between 2016 and 2017. Overall, 1.6% of the samples had the pfk13 C580Y mutation, but this number was as high as 8.8% in one region. Further analyses revealed that the mutation in Guyana had not spread from Southeast Asia, but that it had occurred in Amazonia independently. To better understand the impact of the pfk13 C580Y mutation, Mathieu et al. introduced this genetic change into non-resistant parasites from a country neighbouring Guyana. As expected, the mutation made P. falciparum highly resistant to artemisinin, but it also slowed the growth rate of the parasite. This disadvantage may explain why the mutation has not spread more rapidly through Guyana in recent years. Artemisinin and its derivatives are always associated with other antimalarial drugs to slow the development of resistance; there are concerns that reduced susceptibility to artemisinin leads to the parasites becoming resistant to the partner drugs. Further research is needed to evaluate how the pfk13 C580Y mutation affects the parasite's response to the typical combination of drugs that are given to patients.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Genes, Protozoan , Genetic Fitness , Guyana/epidemiology , Haplotypes , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...