Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 7116, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893587

ABSTRACT

Mammary morphogenesis is an orchestrated process involving differentiation, proliferation and organization of cells to form a bi-layered epithelial network of ducts and lobules embedded in stromal tissue. We have engineered a 3D biomimetic human breast that makes it possible to study how stem cell fate decisions translate to tissue-level structure and function. Using this advancement, we describe the mechanism by which breast epithelial cells build a complex three-dimensional, multi-lineage tissue by signaling through a collagen receptor. Discoidin domain receptor tyrosine kinase 1 induces stem cells to differentiate into basal cells, which in turn stimulate luminal progenitor cells via Notch signaling to differentiate and form lobules. These findings demonstrate how human breast tissue regeneration is triggered by transmission of signals from the extracellular matrix through an epithelial bilayer to coordinate structural changes that lead to formation of a complex ductal-lobular network.


Subject(s)
Breast/cytology , Breast/physiology , Cell Communication/physiology , Cell Differentiation/physiology , Discoidin Domain Receptor 1/metabolism , Biocompatible Materials , Biomedical Engineering , Cell Line , Discoidin Domain Receptor 1/genetics , Epithelial Cells/cytology , Extracellular Matrix , Humans , Regeneration , Signal Transduction , Stem Cells/cytology
2.
PLoS Comput Biol ; 11(4): e1004161, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25894653

ABSTRACT

The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS). We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Mammary Glands, Human/cytology , Stem Cells/cytology , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Profiling , Humans , Organoids/cytology , Organoids/metabolism , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...