Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rep Prog Phys ; 86(4)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36821858

ABSTRACT

We present an experimental and theoretical study which compares the phonon anomalies and the electronic gap features in the infrared response of the weakly coupled two-leg-ladders in Sr14-xCaxCu24O41(SCCO) with those of the underdoped high-Tcsuperconductor YBa2Cu3O6+x(YBCO) and thereby reveals some surprising analogies. Specifically, we present a phenomenological model that describes the anomalous doping- and temperature-dependence of some of the phonon features in thea-axis response (field along the rungs of the ladders) of SCCO. It assumes that the phonons are coupled to charge oscillations within the ladders. Their changes with decreasing temperature reveal the formation of a crystal (density wave) of hole pairs that are oriented along the rungs. We also discuss the analogy to a similar model that was previously used to explain the phonon anomalies and an electronic plasma mode in thec-axis response (field perpendicular to the CuO2planes) of YBCO. We further confirm that an insulator-like pseudogap develops in thea-axis conductivity of SCCO which closely resembles that in thec-axis conductivity of YBCO. Most surprisingly, we find that thec-axis conductivity (field along the legs of the ladders) of SCCO is strikingly similar to the in-plane one (field parallel to the CuO2planes) of YBCO. Notably, in both cases a dip feature develops in the normal state spectra that is connected with a spectral weight shift toward low frequencies and can thus be associated with precursor superconducting pairing correlations that are lacking macroscopic phase coherence. This SCCO-YBCO analogy indicates that collective degrees of freedom contribute to the low-energy response of underdoped highTccuprates and it even suggests that the charges in the CuO2planes tend to segregate forming quasi-one-dimensional structures similar to the two-leg ladders, as predicted for the stripe-scenario or certain intertwinned states.

2.
Phys Rev Lett ; 117(17): 174802, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27824451

ABSTRACT

Using arbitrary periodic pulse patterns we show the enhancement of specific frequencies in a frequency comb. The envelope of a regular frequency comb originates from equally spaced, identical pulses and mimics the single pulse spectrum. We investigated spectra originating from the periodic emission of pulse trains with gaps and individual pulse heights, which are commonly observed, for example, at high-repetition-rate free electron lasers, high power lasers, and synchrotrons. The ANKA synchrotron light source was filled with defined patterns of short electron bunches generating coherent synchrotron radiation in the terahertz range. We resolved the intensities of the frequency comb around 0.258 THz using the heterodyne mixing spectroscopy with a resolution of down to 1 Hz and provide a comprehensive theoretical description. Adjusting the electron's revolution frequency, a gapless spectrum can be recorded, improving the resolution by up to 7 and 5 orders of magnitude compared to FTIR and recent heterodyne measurements, respectively. The results imply avenues to optimize and increase the signal-to-noise ratio of specific frequencies in the emitted synchrotron radiation spectrum to enable novel ultrahigh resolution spectroscopy and metrology applications from the terahertz to the x-ray region.

3.
Sci Adv ; 2(7): e1600341, 2016 07.
Article in English | MEDLINE | ID: mdl-27453944

ABSTRACT

Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.


Subject(s)
Nanodiamonds/chemistry , Hardness , Microscopy, Electron, Transmission , Pressure , Temperature , X-Ray Diffraction
4.
J Synchrotron Radiat ; 18(Pt 4): 539-45, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21685668

ABSTRACT

A high-repetition-rate pump-probe experiment is presented, based on the asynchronous sampling approach. The low-α mode at the synchrotron ANKA can be used for a time resolution down to the picosecond limit for the time-domain sampling of the coherent THz emission as well as for hard X-ray pump-probe experiments, which probe structural dynamics in the condensed phase. It is shown that a synchronization of better than 1 ps is achieved, and examples of phonon dynamics of semiconductors are presented.

5.
Appl Spectrosc ; 60(7): 723-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16854258

ABSTRACT

In this study the intercalation behavior of di- and trivalent cations like Cu(II), Mg(II), Zn(II), and Al(III) into the interlayers of muscovite was investigated by X-ray diffraction and far-infrared spectroscopy. The X-ray diffractometry shows that the original material is a muscovite 2M(1). During the metal cation treatment, new peaks occur at about 1.1 and 2.2 nm, while the original peaks strongly decrease. This gives evidence for the formation of a strongly modified mica structure. The occurrence of bands at low wavenumbers (93 cm(-1) and 104 cm(-1)) in the far-infrared spectra show that the untreated material was partly dehydroxylated. The strong decrease of the band at 93 cm(-1) and the occurrence of a band at 110 cm(-1) during the intercalation are strong hints about the rehydroxylation of the mineral. The strong increase of the band intensity at 88 cm(-1) and the occurrence of a band at 119 cm(-1) in the treated muscovites prove the formation of a new, strongly modified mica phase that has both the new cations and the potassium incorporated into the interlayer space.

SELECTION OF CITATIONS
SEARCH DETAIL
...