Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 49(7): 862-7, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10909996

ABSTRACT

JTT-501, a new insulin sensitizer, improves peripheral glucose uptake in insulin-resistant animals such as KK-Ay mice and Zucker fatty rats. However, the effect of JTT-501 on hepatic glucose metabolism has not been addressed. To investigate this effect, experiments were performed on 6 alloxan-diabetic dogs. Three experiments were conducted for each dog: the treatment experiment, which followed a 10-day oral treatment with JTT-501 30 mg x kg(-1) x d(-1), and 2 control experiments 2 weeks before and 2 weeks after the treatment experiment. A hyperinsulinemic-hyperglycemic clamp was performed with the tracer dilution method (intraportal insulin infusion rate, 18 pmol x kg(-1) x min(-1)). Arterial hyperglycemia (approximately 10 mmol/L) was maintained by adjusting the peripheral glucose infusion rate. After a 45-minute basal period (period I), portal glucose infusion (22.2 micromol x kg(-1)min(-1)) was administered for 120 minutes (period II). This was followed by a 90-minutes recovery period (period III). JTT-501 increased insulin-stimulated glucose utilization (P < .05) and enhanced insulin-mediated suppression of glucose production (P < .05) in periods I and III. Net hepatic glucose balance (NHGB) determined by the arterial-venous (A-V) difference method was increased by JTT-501 in period II (P < .01). We conclude that JTT-501 enhances both hepatic and peripheral insulin sensitivity and therefore may have important therapeutic effects in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Isoxazoles/pharmacology , Liver/metabolism , Alloxan , Animals , Blood Glucose/analysis , Dogs , Glucagon/blood , Insulin/blood , Male
2.
Diabetes ; 49(2): 253-62, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10868942

ABSTRACT

Stress-induced hyperglycemia can lead to significant deterioration in glycemic control in individuals with diabetes. Previously, we have shown in normal dogs that, after intracerebroventricular (ICV) administration of carbachol (a model of moderate stress), increases in both the metabolic clearance rate (MCR) of glucose and endogenous glucose production (GP) occur. However, in hyperglycemic diabetic dogs subjected to the same stress, the MCR of glucose does not increase and glycemia therefore markedly deteriorates because of stimulation of GP. Our aims were to determine the following: 1) whether insulin-induced acute normalization of glycemia, with or without beta-blockade, would correct glucose clearance and prevent the hyperglycemic effect of stress, and 2) whether hyperinsulinemia per se could correct these abnormalities. Stress was induced by ICV carbachol in 27 experiments in five alloxan-administered diabetic dogs subjected to the following protocols in random order: 1) basal insulin infusion (BI) to restore normoglycemia; 2) basal insulin infusion with beta-blockade (BI+block); 3) normoglycemic-hyperinsulinemic clamp with threefold elevation of insulin above basal (3x BI); and 4) normoglycemic-hyperinsulinemic clamp with fivefold elevation of insulin above basal (5 x BI). The BI+block protocol fully prevented stress-induced hyperglycemia, both by increasing MCR (deltaMCR at peak: 0.72 +/- 0.25 ml x kg(-1) x min(-1) vs. no change in BI, P < 0.05) and by diminishing the stress-induced increment in GP observed in BI (deltaGP at peak: 3.72 +/- 0.09 micromol x kg(-1) x min(-1) for BI+block vs. 14.10 +/- 0.31 micromol x kg(-1) x min(-1) for BI, P < 0.0001). In contrast, 3x BI and 5x BI treatments with normoglycemic-hyperinsulinemic clamps proportionately increased basal MCR at baseline, but paradoxically were not associated with an increase in MCR in response to stress, which induced a twofold increase in GP. Thus, in alloxan-administered diabetic dogs, stress increased GP but not MCR, despite normalization of glycemia with basal or high insulin. In contrast, beta-adrenergic blockade almost completely restored the metabolic response to stress to normal and prevented marked hyperglycemia, both by limiting the rise in GP and by increasing glucose MCR. We conclude that acute normalization of glycemia with basal insulin or hyperinsulinemia does not prevent hyperglycemic effects of stress unless accompanied by beta-blockade, and we speculate that short-term beta-blockade may be a useful treatment modality under some stress conditions in patients with diabetes.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , Blood Glucose/analysis , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Hyperglycemia/prevention & control , Propranolol/therapeutic use , Stress, Physiological/blood , Animals , Carbachol , Dogs , Epinephrine/blood , Hyperglycemia/etiology , Hyperinsulinism/blood , Insulin/blood , Male , Norepinephrine/blood , Reference Values , Stress, Physiological/chemically induced
3.
Diabetes ; 48(6): 1281-8, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10342817

ABSTRACT

This study was undertaken to characterize the effects of glycemia per se (glucose effectiveness) on muscle glucose transport. Isolated rat hindlimbs were perfused in situ for 2 h with perfusate containing either low (2 mmol/l, n = 7), normal (6.5 mmol/l, n = 6), or high (20 mmol/l, n = 6) concentrations of glucose, without insulin, to simulate hypo-, eu-, and hyperglycemic conditions. The effect of varying glucose concentrations on muscle glucose transport was assessed by an ensuing 30-min perfusion with 5.5 mmol/l glucose perfusate without insulin. The 2-h of low glucose perfusion induced significant increases in both muscle glucose clearance (approximately 2.3-fold, P < 0.01) and plasma membrane GLUT4 content (approximately 20%, P < 0.05) relative to normal. In contrast, high glucose perfusion decreased glucose clearance (approximately 1.7-fold, P < 0.01) and plasma membrane GLUT4 content (approximately 20%, P < 0.05). Glucose extraction during the following 30-min perfusion was 2.5-fold greater (P < 0.0001) in the low group and threefold less (P < 0.0001) in the high group, relative to normal. 2-[3H]deoxyglucose-6-phosphate content in both red (soleus) and white (extensor digitorum longus) muscles increased approximately twofold after 2 h of low glucose perfusion (P < 0.0001) and decreased > or =2-fold after high glucose perfusion (P < 0.0001), relative to normal. It is concluded that glycemia regulates glucose transport in skeletal muscle independently of insulin, achieved at least partially via changes in plasma membrane GLUT4. We propose that high glucose levels can acutely downregulate GLUT4 and glucose clearance, thus limiting excessive glucose uptake in muscle. Conversely, low glucose-induced upregulation of muscle glucose clearance and GLUT4 can compensate for reduced glucose availability in the circulation.


Subject(s)
Glucose/metabolism , Hyperglycemia/metabolism , Hypoglycemia/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle, Skeletal/metabolism , Acute Disease , Animals , Biological Transport , Hindlimb , Male , Metabolic Clearance Rate , Perfusion , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...