Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(14): 8596-603, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25738191

ABSTRACT

Silver nanoclusters were prepared in a soda-lime glass matrix through the ion-exchange (Ag(+)↔ Na(+)) method followed by thermal annealing in an air atmosphere. The nanoscale patterning of Ag nanoclusters embedded in a soda lime glass matrix in an air atmosphere at different annealing temperatures has been investigated. During annealing, Ag(+) is reduced to Ag(0) and subsequently forms silver nanoparticles inside the glass matrix. A blue shift of 20 nm has been observed as a function of the post annealing temperature. The photoluminescence intensity is highest for an annealing temperature of 500 °C for 1 h and continuously decreases as annealing temperature increases up to 600 °C. The presence of spherical nanoparticles with a maximum particle size of 7.2 nm has been observed after annealing at 600 °C for 1 hour, which is consistent with Mie theory based results.

2.
Phys Chem Chem Phys ; 16(43): 23874-83, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25273381

ABSTRACT

TiO2 is the most studied semiconductor material for photovoltaics and photocatalyst applications, but due to a very large electron hole recombination process it is difficult to use it as a photovoltaics material. In this context graphene-decorated Ag-doped TiO2 nanostructures have been synthesized by a simple, cost effective chemical method. In this paper, we have studied the structural transformations and electronic band structure of Ag-doped TiO2 due to the incorporation of graphene oxide. Pure rutile and anatase-rutile mixed phases of TiO2 nanoparticles were obtained by Ag doping and annealing at 400 °C. A large red shift was observed in most of the graphene-decorated, doped TiO2 hybrid nanostructures, which is because of the electron transfer between the conduction bands of the doped TiO2 and the multilayer graphene. The Ag-doped TiO2 nanoparticles appear in the shape of a bunch of bananas (or rice-like) because of the jumbled collection of particles, which remain unaltered even after graphene decoration. The strong electrical coupling of Ag-doped TiO2 with reduced graphene oxide produces an advanced hybrid material useful for superior photovoltaics, photocatalytic activity and other applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...