Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710020

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Subject(s)
Checklist , Publishing , Reproducibility of Results , Image Processing, Computer-Assisted , Microscopy
3.
Histochem Cell Biol ; 160(3): 199-209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37341795

ABSTRACT

Bioimaging has now entered the era of big data with faster-than-ever development of complex microscopy technologies leading to increasingly complex datasets. This enormous increase in data size and informational complexity within those datasets has brought with it several difficulties in terms of common and harmonized data handling, analysis, and management practices, which are currently hampering the full potential of image data being realized. Here, we outline a wide range of efforts and solutions currently being developed by the microscopy community to address these challenges on the path towards FAIR bioimaging data. We also highlight how different actors in the microscopy ecosystem are working together, creating synergies that develop new approaches, and how research infrastructures, such as Euro-BioImaging, are fostering these interactions to shape the field.


Subject(s)
Ecosystem , Microscopy
4.
ArXiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-36824427

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

5.
J Cell Mol Med ; 26(12): 3495-3505, 2022 06.
Article in English | MEDLINE | ID: mdl-35586951

ABSTRACT

Classic Hodgkin lymphoma (cHL) is usually characterized by a low tumour cell content, derived from crippled germinal centre B cells. Rare cases have been described in which the tumour cells show clonal T-cell receptor rearrangements. From a clinicopathological perspective, it is unclear if these cases should be classified as cHL or anaplastic large T-cell lymphoma (ALCL). Since we recently observed differences in the motility of ALCL and cHL tumour cells, here, we aimed to obtain a better understanding of T-cell-derived cHL by investigating their global proteomic profiles and their motility. In a proteomics analysis, when only motility-associated proteins were regarded, T-cell-derived cHL cell lines showed the highest similarity to ALK- ALCL cell lines. In contrast, T-cell-derived cHL cell lines presented a very low overall motility, similar to that observed in conventional cHL. Whereas all ALCL cell lines, as well as T-cell-derived cHL, predominantly presented an amoeboid migration pattern with uropod at the rear, conventional cHL never presented with uropods. The migration of ALCL cell lines was strongly impaired upon application of different inhibitors. This effect was less pronounced in cHL cell lines and almost invisible in T-cell-derived cHL. In summary, our cell line-derived data suggest that based on proteomics and migration behaviour, T-cell-derived cHL is a neoplasm that shares features with both cHL and ALCL and is not an ALCL with low tumour cell content. Complementary clinical studies on this lymphoma are warranted.


Subject(s)
Hodgkin Disease , Lymphoma, Large-Cell, Anaplastic , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Humans , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Proteomics , T-Lymphocytes/metabolism
6.
J Cell Sci ; 132(4)2019 02 11.
Article in English | MEDLINE | ID: mdl-30745333

ABSTRACT

Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of in vitro reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration in vivo These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.


Subject(s)
Biological Assay , Cell Movement , Extracellular Matrix/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Cellular Microenvironment/physiology , Collagen/chemistry , Dimethylpolysiloxanes/chemistry , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Extracellular Matrix/ultrastructure , Humans , Microtechnology/methods , Models, Biological , Molecular Mimicry , Single-Cell Analysis/instrumentation
7.
Proc Natl Acad Sci U S A ; 114(17): 4418-4423, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28400519

ABSTRACT

The fast bloodstream of animals is associated with large shear stresses. To withstand these conditions, blood cells have evolved a special morphology and a specific internal architecture to maintain their integrity over several weeks. For instance, nonmammalian red blood cells, mammalian erythroblasts, and platelets have a peripheral ring of microtubules, called the marginal band, that flattens the overall cell morphology by pushing on the cell cortex. In this work, we model how the shape of these cells stems from the balance between marginal band rigidity and cortical tension. We predict that the diameter of the cell scales with the total microtubule polymer and verify the predicted law across a wide range of species. Our analysis also shows that the combination of the marginal band rigidity and cortical tension increases the ability of the cell to withstand forces without deformation. Finally, we model the marginal band coiling that occurs during the disk-to-sphere transition observed, for instance, at the onset of blood platelet activation. We show that when cortical tension increases faster than cross-linkers can unbind, the marginal band will coil, whereas if the tension increases more slowly, the marginal band may shorten as microtubules slide relative to each other.


Subject(s)
Blood Platelets/cytology , Computer Simulation , Erythrocytes/cytology , Microtubules/physiology , Models, Biological , Animals , Biomechanical Phenomena , Blood Platelets/physiology , Erythrocytes/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...