Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(21): 25932-25941, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37196351

ABSTRACT

The polymer additive strategy provides a facile and cost-effective way for passivating defects and trap sites at the grain boundaries and interfaces and acting as a barrier against the external degradation factors in perovskite-based devices. However, limited literature exists discussing the integration of hydrophobic and hydrophilic polymer additives in the form of a copolymer within the perovskite films. The inherent difference in the chemical structure of these polymers and their interaction with perovskite components and the environment leads to critical differences in the respective polymer-perovskite films. The current work utilizes both homopolymer and copolymer strategies to understand the effect of polystyrene (PS) and polyethylene glycol (PEG), two common commodity polymers, over the physicochemical and electro-optical properties of the as-fabricated devices and the distribution of polymer chains across the depth of perovskite films. The hydrophobic PS integrated perovskite devices PS-MAPbI3, 36 PS-b-1.4-PEG-MAPbI3, and 21.5 PS-b-20-PEG-MAPbI3 outperform hydrophilic PEG-MAPbI3 and pristine MAPbI3 devices and exhibit higher photocurrent, lower dark currents, and greater stability. A critical difference is also observed in the stability of devices, where rapid decay of performance is observed in the pristine MAPbI3 films. The deterioration in performance is highly limited for hydrophobic polymer-MAPbI3 films as they maintain 80% of their initial performance.

2.
ACS Appl Mater Interfaces ; 13(49): 58956-58965, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34851102

ABSTRACT

The rigid and brittle nature of methylammonium lead iodide (MAPbI3) polycrystalline films limits their application in stretchable devices due to rapid deterioration in performance on cycling. By incorporation of polymer chains in the MAPbI3 films, a strategy to alter the mechanical modulus and the viscoelastic nature of the films has been developed. Combining this with flexible nanochain electrodes, highly stretchable and stable perovskite devices have been fabricated. The resultant polymer-MAPbI3 photodetector exhibits ultralow dark currents (∼10-11 A) and high light switching ratios (∼103) and maintains 75% of performance after 30 days. The viscoelastic nature and lower modulus of the polymer improve the energy dissipation in the polymer-MAPbI3 devices; as a result, they maintain 52% of the device performance after 10000 stretching cycles at 50% strain. The difference in the mechanical behavior is clearly observed in the failure mode of the two films. While rapid catastrophic cracking is observed in MAPbI3 films, the intensity and size of such crack formation are highly limited in polymer-MAPbI3 films, which prevent their failure.

3.
J Phys Chem Lett ; 12(5): 1481-1489, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33533616

ABSTRACT

The integration of polymer chains with organolead halide perovskite (MAPbI3) films, leading to enhanced stability and electro-optical performance, is critically affected by the molecular weight of chains. The molecular weight determines the mobility and volume of the chains, which affects the crystallization kinetics and, hence, perovskite grain size. The insulating nature of the chains is another critical factor that affects both ion migration and conduction of electronic charge. The combined effect of these factors leads to optimal performance with the use of medium-length chains. A simple model integrating the two effects accurately fits the response of the polymer-perovskite composite. Further characterization results show that the polymer-perovskite films have a three-layer architecture consisting of nanoscale polymer-rich top and bottom layers. These combined results show that the optimization of performance in polymer-perovskite devices depends critically on the size of the chains due to their multiple effects on the perovskite matrix.

4.
ACS Appl Mater Interfaces ; 12(22): 25011-25019, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32388977

ABSTRACT

A commodity-scale polymer is used for controlling the nucleation and growth of single crystals of organolead halide perovskite. The polymer [polystyrene (PS)] cross-links and strongly interacts with PbI2 and MAI (MAPbI3 perovskite precursors) resulting in the control of the crystallization process. The PS concentration modulates the nucleation time, crystal size, and the number of perovskite single crystals. In addition, the PS-based MAPbI3 crystals show an enhanced performance as well as improved thermal and environmental stability. Specifically, the PS-MAPbI3 crystals show 3 times higher photocurrent than plain MAPbI3 crystals and maintain a stable structure for more than 50 days (1200 h) under continuous 0.1 sun illumination in the air with a relative humidity of 40-45%. The improved performance and stability are attributed to the direct interaction between the PS and perovskite, which greatly reduces the ion migration, defect traps, and charge recombination and improves the carrier mobility and lifetime.

5.
Nanoscale ; 11(38): 17841-17850, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31552980

ABSTRACT

Nanozymes aim to mimic enzyme activities using nanomaterials. Nanoceria (CeO2 nanoparticles) is an important model nanozyme for its rich redox chemistry. In particular, its oxidase-like activity allows oxidation reactions without the need of unstable and toxic H2O2. Fluoride can significantly improve its oxidase-like activity, and this work aims to understand the mechanism of fluoride-promoted catalysis. First, fluoride can adsorb on CeO2 tighter than other halides, but not as strong as phosphate as characterized by isothermal titration calorimetry (ITC). FT-IR spectroscopy indicates adsorption of fluoride likely via exchange with surface hydroxide groups. Fluoride capping inverses the surface charge of CeO2, facilitating desorption of the ABTS oxidation product, significantly increasing the turnover number. The Raman, EPR and XPS spectroscopy results demonstrate that the concentration of Ce3+ and the accompanying oxygen vacancy significantly increased upon adding F-, which can explain the enhanced catalytic activity. Finally, the electron transfer properties of fluoride-capped CeO2 were more efficient than that of the bare CeO2 as determined by a direct electrochemical measurement on a glass carbon electrode. This study has provided new insight into nanoceria, and can also further confirm the role of nanoceria as a model for engineering the surface of nanozymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...