Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 6(2): 842-51, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24264356

ABSTRACT

The multiphase approach was adapted to enhance the electromagnetic interference (EMI) shielding effectiveness (SE) of polyaniline (PANI) based nanocomposites. The natural graphite flakes (NGF) incorporated modified PANI was used for the development of multi-walled carbon nanotubes (MWCNTs) based nanocomposites. In PANINGF-MWCNTs composites, multilayer graphene was synthesized in situ by ball milling. The resultant PANINGF-MWCNTs nanocomposites were characterized by different techniques. It was revealed from the transmission electron microscope (TEM) observation that in situ derived multilayer graphene acts as a bridge between PANI and MWCNTs, and plays a significant role for improving the properties of multiphase nanocomposites. It was observed that EMI-SE increases with increasing the MWCNTs content from 1 to 10 wt% in the multiphase nanocomposites. The maximum value of total EMI-SE was -98 dB of nanocomposite with 10 wt% of MWCNTs content. The high value of EMI-SE is dominated by the absorption phenomenon which is due to the collective effect of increase in space charge polarization and decrease in carrier mobility. The decrease in carrier mobility has a positive effect on the shore hardness value due to the strong interaction between the reinforcing constituent in multiphase nanocomposites. As a consequence, shore hardness increases from 56 to 91 at 10 wt% of MWCNTs.

2.
Biotechnol Appl Biochem ; 60(2): 162-9, 2013.
Article in English | MEDLINE | ID: mdl-23586605

ABSTRACT

Polymethyl methacrylate (PMMA) nanofiber membrane (NFM) was synthesized by an electrospinning technique. These membranes were utilized as a support for immobilization of xylanase enzyme to study its pH stability, thermal stability, and reusability. The morphology of aligned NFM was studied by optical microscopy and scanning electron microscopy. The PMMA NFM was functionalized with phenylenediamine and activated with glutaraldehyde to yield an aldehyde group on its surface for covalent immobilization of xylanase. The Fourier transform infrared analysis of the covalently immobilized xylanase confirmed that the enzyme was immobilized on PMMA NFM via amide linkages. The immobilization efficiency of covalently bound xylanase was found experimentally to be 90%. A forward shift in pH optima from 6.0-7.0 (soluble enzyme) to 7.0-9.0 (immobilized enzyme) was observed after xylanase immobilization. The pH and temperature stability of xylanase were enhanced upon its covalent immobilization. The immobilized enzyme was active on repeated use and retained ∼80% of its initial activity after 11 reaction cycles. The improved thermal and operational stability of the covalently immobilized enzyme on PMMA NFM might be advantageous for industrial applications.


Subject(s)
Bacillus/enzymology , Endo-1,4-beta Xylanases/metabolism , Membranes, Artificial , Nanofibers , Polymethyl Methacrylate/chemistry , Microscopy, Electron, Scanning
3.
J Nanosci Nanotechnol ; 11(6): 5179-86, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21770161

ABSTRACT

Amino functionalized boron nitride nanotubes were used as the reinforcement material for the fabrication of Al-matrix composites using powder metallurgy process. It was found that the mechanical properties of these composites were improved significantly as compared to pure Al composites fabricated under similar conditions. The microhardness of these composites was found to improve by five times and compressive strength by 300% as compared to pure Al composites under similar processing conditions. The enhanced mechanical properties of these composites can be attributed to the proper dispersion of boron nitride nanotubes (BNNTs) in Al matrix and the formation of a strong interfacial bonding between BNNTs and Al matrix under the processing conditions. High-resolution transmission electron microscopy studies revealed the formation of transition layer of AlB2 which might lead to a better load transfer from Al matrix to the BNNTs. Further, these composites are believed to withstand high temperatures as compared to Al matrix composites reinforced with carbon nanotubes and, therefore, can be used for applications where lightweight and high strength materials are desired with stability at elevated temperatures.

4.
J Phys Chem B ; 110(48): 24371-6, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17134189

ABSTRACT

Density gradient centrifugation is a high-resolution technique for the separation and characterization of large molecules and stable complexes. We have analyzed various nanotube structures by preparative centrifugation in sodium metatungstate-water solutions. Bundled, isolated and acid-treated single-walled nanotubes (SWNTs) and multiwall nanotubes (MWNTs) formed sharp bands at well-defined densities. The structure of the material in each band was confirmed by transmission electron microscopy and Raman spectroscopy. Our data suggest respective densities of 1.87, 2.13, 1.74, and 2.1 g/cm(3) for bundled, isolated, and acid-treated SWNTs and MWNTs. These measured results compare well with their calculated densities.

SELECTION OF CITATIONS
SEARCH DETAIL
...