Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arthropod Struct Dev ; 79: 101346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520874

ABSTRACT

The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.


Subject(s)
Cockroaches , Isoptera , Animals , Pheromones/metabolism , Monoterpenes/metabolism
2.
J Chem Ecol ; 49(11-12): 642-651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37566284

ABSTRACT

Stylotermitidae appear peculiar among all termites, feeding in trunks of living trees in South Asia only. The difficulty to collect them limits the ability to study them, and they thus still belong to critically unknown groups in respect to their biology. We used a combination of microscopic observations, chemical analysis and behavioural tests, to determine the source and chemical nature of the trail-following pheromone of Stylotermes faveolus from India and S. halumicus from Taiwan. The sternal gland located at the 5th abdominal segment was the exclusive source of the trail-following pheromone in both S. faveolus and S. halumicus, and it is made up of class I, II and III secretory cells. Using gas chromatography coupled mass spectrometry, (3Z)-dodec-3-en-1-ol (DOE) was identified as the trail-following pheromone which elicits strong behavioural responses in workers at a threshold around 10- 4 ng/cm and 0.1 ng/gland. Our results confirm the switch from complex aldehyde trail-following pheromones occurring in the basal groups to simpler linear alcohols in the ancestor of Kalotermitidae and Neoisoptera.


Subject(s)
Animal Communication , Cockroaches , Pheromones , Animals , Gas Chromatography-Mass Spectrometry , Pheromones/chemistry
3.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37055367

ABSTRACT

During the last few decades, endophytes have attracted increased attention due to their ability to produce a plethora of bioactive secondary metabolites. These compounds not only help the endophytes to outcompete other plant-associated microbes or pathogens through quorum sensing, but also enable them to surmount the plant immune system. However, only a very few studies have described the interlink between various biochemical and molecular factors of host-microbe interactions involved in the production of these pharmacological metabolites. The peculiar mechanisms by which endophytes modulate plant physiology and metabolism through elicitors, as well as how they use transitional compounds of primary and secondary metabolism as nutrients and precursors for the synthesis of new compounds or enhancing existing metabolites, are still less understood. This study thus attempts to address the aspects of synthesis of such metabolites used in therapeutics by the endophytes in the light of their ecological significance, adaptation, and intercommunity interactions. Our study explores how endophytes adapt to the specific host environment, especially in medicinal plants that produce metabolites with pharmacological potential and simultaneously modulate host gene expression for the biosynthesis of these metabolites. We also discuss the differential interactions of fungal and bacterial endophytes with their hosts.


Subject(s)
Plants, Medicinal , Plants, Medicinal/microbiology , Endophytes/physiology , Secondary Metabolism , Adaptation, Physiological , Quorum Sensing , Fungi/metabolism
4.
Microb Ecol ; 86(1): 25-48, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35867138

ABSTRACT

Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.


Subject(s)
Ecosystem , Plants , Plants/metabolism , Adaptation, Physiological , Symbiosis , Environmental Pollution
5.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-32149352

ABSTRACT

Microbial fertilizers have increasingly gained popularity as environmentally sustainable nutritional supplement for plant growth. However, the effect of these microbes on plant-induced responses and the resultant effect on late-arriving herbivores are still unclear. Following insect herbivory, oxidative stress is one of the earliest responses induced in plants. Therefore, we analyzed the effect of phosphorus solubilizing bacteria (PSB), vesicular-arbuscular mycorrhiza (VAM) and their combination on oxidative stress in Brassica juncea against Spodoptera litura herbivory. Six antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase and glutathione reductase (GR), were studied. Our results indicated a sporadic increase of APX and GR in PSB-supplemented plants. In contrast, VAM-supplemented plants showed an active systemic response against herbivory with an increase in all the six enzymes at 72 h. Conversely, supplementation of PSB-VAM together led to increased APX, SOD, CAT and POD enzymes, which subsided by 72 h. Thus, the presence of VAM, alone or in combination with PSB, acted like a vaccination for plants against stress. However, the mode of action of PSB and VAM governed the temporal dynamics of antioxidants. Our study thus shows microbial fertilizers have prominent effects on plant immunity.


Subject(s)
Fertilizers , Mustard Plant , Animals , Catalase/metabolism , Hydrogen Peroxide , Insecta , Mustard Plant/metabolism , Oxidative Stress , Superoxide Dismutase
6.
Environ Pollut ; 257: 113595, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31801671

ABSTRACT

Mitigation of air pollution by plants is a well-established phenomenon. Trees planted on the roadside are known to reduce particulate matter pollution by about 25%. In an urban ecosystem, especially in a metropolitan city such as Delhi, roadside trees are constantly exposed to air pollution. We, therefore, evaluated the effect of air pollution on a common Indian roadside tree, Neem (Azadirachta indica), and its associated microbes in areas with high and low levels of particulate matter (PM) pollution in Delhi. We hypothesized that alteration in the air quality index not only influences plant physiology but also its microbiome. A 100-fold increase in the number of epiphytic and 10-100 fold increase in endophytic colonies were found with 1.7 times increase in the level of pollutants. Trees in the polluted areas had an abundance of Salmonella, Proteus and Citrobacter, and showed increased secondary metabolites such as phenols and tannins as well as decreased chlorophyll and carotenoid. The number of unique microbes was positively correlated with increased primary metabolites. Our study thus indicates that, alteration in air quality affects the natural micro-environment of plants. These results may be utilized as sustainable tools for studying plant adaptations to the urban ecosystem.


Subject(s)
Air Pollution/analysis , Azadirachta/chemistry , Azadirachta/microbiology , Environmental Monitoring , Chlorophyll/metabolism , Cities , Ecosystem , Particulate Matter/analysis , Plant Leaves/chemistry , Plant Leaves/microbiology
7.
Mol Ecol ; 22(24): 6179-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24219759

ABSTRACT

Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.


Subject(s)
Herbivory , Hymenoptera/physiology , Lepidoptera/physiology , Mustard Plant/chemistry , Spodoptera/physiology , Volatile Organic Compounds/chemistry , Animals , Cyclopentanes/metabolism , Female , Gene Expression Regulation, Plant , Host Specificity , Larva/physiology , Lepidoptera/parasitology , Mustard Plant/genetics , Oxylipins/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Spodoptera/parasitology
8.
Plant Cell Environ ; 36(3): 528-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22889298

ABSTRACT

While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket-like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above- and belowground herbivores and sap-sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.


Subject(s)
Herbivory , Host-Parasite Interactions , Insecta/physiology , Mustard Plant/physiology , Plant Nectar/physiology , Animals , Female , Fertility , Insecta/parasitology , Mustard Plant/anatomy & histology , Mustard Plant/chemistry , Plant Nectar/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...