Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(33): 39905-39914, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37567567

ABSTRACT

Ionic diode based devices or circuits can be applied, for example, in electroosmotic pumps or in desalination processes. Aquivion ionomer coated asymmetrically over a Teflon film (5 µm thickness) with a laser-drilled microhole (approximately 10 µm diameter) gives a cationic diode with a rectification ratio of typically 10-20 (measured in 0.01 M NaCl with ±0.3 V applied bias). Steady state voltammetry, chronoamperometry, and electrochemical impedance spectroscopy data are employed to characterize the ionic diode performance parameters. Next, a COMSOL 6.0 finite element model is employed to quantitatively assess/compare transient phenomena and to extract mechanistic information by comparison with experimental data. The experimental diode time constant and diode switching process associated with a distorted semicircle (with a typical diode switching frequency of 10 Hz) in the Nyquist plot are reproduced by computer simulation and rationalized in terms of microhole diffusion-migration times. Fundamental understanding and modeling of the ionic diode switching process can be exploited in the rational/optimized design of new improved devices.

2.
Micromachines (Basel) ; 13(3)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35334654

ABSTRACT

Electrochemical sensors are powerful tools for the detection and real-time monitoring of a wide variety of analytes. However, the long-term operation of Faradaic sensors in complex media is challenging due to fouling. The protection of the electrode surface during in vivo operation is a key element for improving the monitoring of analytes. Here, we study different EUDRAGIT® controlled release acrylate copolymers for protecting electrode surfaces. The dissolution of these polymers-namely EUDRAGIT® L 30 D-55 and EUDRAGIT® FS 30 D-is triggered by a change in pH of the environment, and it is electrochemically monitored by detecting electrode access by means of a redox probe. The full dissolution of the polymer is achieved within 30 min and the electrode response indicates a complete recovery of the original electrochemical performance. We demonstrate that amperometric sensing is a practical and straightforward technique for real-time and in situ sensing of EUDRAGIT® dissolution profiles. It will find future applications in determining the protection of polymer electrode coating in real matrices and in vivo applications.

3.
Adv Biol (Weinh) ; 6(4): e2100953, 2022 04.
Article in English | MEDLINE | ID: mdl-34472724

ABSTRACT

Single-molecule fluorescence detection offers powerful ways to study biomolecules and their complex interactions. Here, nanofluidic devices and camera-based, single-molecule Förster resonance energy transfer (smFRET) detection are combined to study the interactions between plant transcription factors of the auxin response factor (ARF) family and DNA oligonucleotides that contain target DNA response elements. In particular, it is shown that the binding of the unlabeled ARF DNA binding domain (ARF-DBD) to donor and acceptor labeled DNA oligonucleotides can be detected by changes in the FRET efficiency and changes in the diffusion coefficient of the DNA. In addition, this data on fluorescently labeled ARF-DBDs suggest that, at nanomolar concentrations, ARF-DBDs are exclusively present as monomers. In general, the fluidic framework of freely diffusing molecules minimizes potential surface-induced artifacts, enables high-throughput measurements, and proved to be instrumental in shedding more light on the interactions between ARF-DBDs monomers and between ARF-DBDs and their DNA response element.


Subject(s)
Fluorescence Resonance Energy Transfer , Transcription Factors , DNA/chemistry , DNA Probes , Nanotechnology , Oligonucleotides
4.
Anal Bioanal Chem ; 412(17): 4067-4075, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32342130

ABSTRACT

Nanofluidic electrochemical devices confine the volume of chemical reactions to femtoliters. When employed for light generation by electrochemiluminescence (ECL), nanofluidic confinement yields enhanced intensity and robust luminescence. Here, we investigate different ECL pathways, namely coreactant and annihilation ECL in a single nanochannel and compare light emission profiles. By high-resolution imaging of electrode areas, we show that different reaction schemes produce very different emission profiles in the unique confined geometry of a nanochannel. The confrontation of experimental results with finite element simulation gives further insight into the exact reaction ECL pathways. We find that emission strongly depends on depletion, geometric exclusion, and recycling of reactants in the nanofluidic device.

5.
ACS Appl Mater Interfaces ; 12(2): 3214-3224, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31850740

ABSTRACT

Membrane materials with semipermeability for anions or for cations are of interest in electrochemical and nanofluidic separation and purification technologies. In this study, partially hydrolyzed polyacrylonitrile (phPAN) is investigated as a pH-switchable anion/cation conductor. When switching from anionic to cationic semipermeability, also the ionic current rectification effect switches for phPAN materials deposited asymmetrically onto a 5, 10, 20, or 40 µm diameter microhole in a 6 µm thick polyethylene-terephthalate (PET) film substrate. Therefore, ionic rectifier behavior can be tuned and used to monitor and characterize semipermeability. Effects of electrolyte type and concentration and pH (relative to the zeta potential at approximately 3.1) are investigated by voltammetry, chronoamperometry, and impedance spectroscopy. A computational model provides good qualitative agreement with the observed electrolyte concentration data. High rectification effects are observed for both cations (pH > 3.1) and anions (pH < 3.1) but only at relatively low ionic strengths.

6.
Lab Chip ; 19(9): 1599-1609, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30950460

ABSTRACT

In vitro digestions are essential for determining the bioavailability of compounds, such as nutrients. We have developed a cell-free, miniaturized enzymatic digestive system, employing three micromixers connected in series to mimic the digestive functions of the mouth, stomach and small intestine. This system continuously processes samples, e.g. containing nutrients, to provide a constant flow of digested materials which may be presented to a subsequent gut-on-a-chip absorption module, containing living human intestinal cells. Our system incorporates three-compartment enzymatic digestion, one of the key functions of the gastrointestinal tract. In each of these compartments, we modify the chemical environment, including pH, buffer, and mineral composition, to closely mimic the local physiological environment and create optimal conditions for digestive processes to take place. It will therefore provide an excellent addition to existing gut-on-a-chip systems, providing the next step in determining the bio-availability of orally administered compounds in a fast and continuous-flow ex vivo system. In this paper, we demonstrate enzymatic digestion in each separate compartment using compounds, starch and casein, as model nutrients. The use of transparent, microfluidic micromixers based on chaotic advection, which can be probed directly with a microscope, enabled enzyme kinetics to be monitored from the very start of a reaction. Furthermore, we have digested lactoferrin in our system, demonstrating complete digestion of this milk protein in much shorter times than achievable with standard in vitro digestions using batch reactors.


Subject(s)
Digestion , Enzymes/metabolism , Gastrointestinal Tract/metabolism , Lab-On-A-Chip Devices , Biological Availability , Gastric Juice/metabolism , Gastrointestinal Tract/physiology , Humans , Hydrogen-Ion Concentration , Kinetics , Lactoferrin/metabolism
7.
Lab Chip ; 19(1): 79-86, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30468446

ABSTRACT

Single-molecule detection schemes offer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. However, probing biomolecular interactions and reactions with high throughput and time resolution remains challenging, often requiring surface-immobilized entities. Here, we introduce glass-made nanofluidic devices for the high-throughput detection of freely-diffusing single biomolecules by camera-based fluorescence microscopy. Nanochannels of 200 nm height and a width of several micrometers confine the movement of biomolecules. Using pressure-driven flow through an array of parallel nanochannels and by tracking the movement of fluorescently labelled DNA oligonucleotides, we observe conformational changes with high throughput. In a device geometry featuring a T-shaped junction of nanochannels, we drive steady-state non-equilibrium conditions by continuously mixing reactants and triggering chemical reactions. We use the device to probe the conformational equilibrium of a DNA hairpin as well as to continuously observe DNA synthesis in real time. Our platform offers a straightforward and robust method for studying reaction kinetics at the single-molecule level.


Subject(s)
DNA/analysis , Lab-On-A-Chip Devices , Nanotechnology/instrumentation , Single Molecule Imaging/instrumentation , DNA/chemistry , Equipment Design , Glass , High-Throughput Screening Assays/instrumentation , Immobilized Nucleic Acids/chemistry , Microscopy, Fluorescence , Molecular Probes/chemistry
8.
Lab Chip ; 18(19): 2913-2916, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30155534

ABSTRACT

We suspended a single nanoskived gold nanowire in a microfluidic channel. In this preliminary report, a 200 nm-diameter nanowire was used as an electrode to perform hydrodynamic voltammetry in the center of solution flow. Suspended nanowires exhibit superior current response due to highly efficient mass transport in the area of fastest flow.

9.
Anal Chem ; 90(12): 7127-7130, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29808992

ABSTRACT

Nanoscale channels and electrodes for electrochemical measurements exhibit extreme surface-to-volume ratios and a correspondingly high sensitivity to even weak degrees of surface interactions. Here, we exploit the potential-dependent reversible adsorption of outer-sphere redox species to modulate in space and time their concentration in a nanochannel under advective flow conditions. Induced concentration variations propagate downstream at a species-dependent velocity. This allows one to amperometrically distinguish between attomole amounts of species based on their time-of-flight. On-demand concentration pulse generation, separation, and detection are all integrated in a miniaturized platform.

10.
Chem Sci ; 9(48): 8946-8950, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30647886

ABSTRACT

Microfabricated nanofluidic electrochemical devices offer a highly controlled nanochannel geometry; they confine the volume of chemical reactions to the nanoscale and enable greatly amplified electrochemical detection. Here, the generation of stable light emission by electrochemiluminescence (ECL) in transparent nanofluidic devices is demonstrated for the first time by exploiting nanogap amplification. Through continuous oxidation and reduction of [Ru(bpy)3]2+ luminophores at electrodes positioned at opposite walls of a 100 nm nanochannel, we compare classic redox cycling and ECL annihilation. Enhanced ECL light emission of attomole luminophore quantities is evidenced under ambient conditions due to the spatial confinement in a 10 femtoliter volume, resulting in a short diffusion timescale and highly efficient ECL reaction pathways at the nanoscale.

11.
ACS Sens ; 2(6): 724-728, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28670622

ABSTRACT

We report a strategy for the fabrication of a new type of electrochemical nanogap transducer. These nanogap devices are based on signal amplification by redox cycling. Using two steps of electron-beam lithography, vertical gold electrodes are fabricated side by side at a 70 nm distance encompassing a 20 attoliter open nanogap volume. We demonstrate a current amplification factor of 2.5 as well as the possibility to detect the signal of only 60 analyte molecules occupying the detection volume. Experimental voltammetry results are compared to calculations from finite element analysis.

12.
ACS Appl Mater Interfaces ; 9(12): 11272-11278, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28287696

ABSTRACT

A thin film of Nafion, of approximately 5 µm thickness, asymmetrically deposited onto a 6 µm thick film of poly(ethylene terephthalate) (PET) fabricated with a 5, 10, 20, or 40 µm microhole, is shown to exhibit prominent ionic diode behavior involving cation charge carrier ("cationic diode"). The phenomenon is characterized via voltammetric, chronoamperometric, and impedance methods. Phenomenologically, current rectification effects are comparable to those observed in nanocone devices where space-charge layer effects dominate. However, for microhole diodes a resistive, a limiting, and an overlimiting potential domain can be identified and concentration polarization in solution is shown to dominate in the closed state.

13.
Faraday Discuss ; 193: 41-50, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27775135

ABSTRACT

The diffusive mass transport of individual redox molecules was probed experimentally in microfabricated nanogap electrodes. The residence times for molecules inside a well-defined detection volume were extracted and the resulting distribution was compared with quantitative analytical predictions from random-walk theory for the time of first passage. The results suggest that a small number of strongly adsorbing sites strongly influence mass transport at trace analyte levels.

14.
ACS Nano ; 10(2): 2852-9, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26836373

ABSTRACT

This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced.

15.
Chemphyschem ; 17(4): 452-7, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26458730

ABSTRACT

Classical methods to study single enzyme molecules have provided valuable information about the distribution of conformational heterogeneities, reaction mechanisms, and transients in enzymatic reactions when individual molecules instead of an averaging ensemble are studied. Here, we highlight major advances in all-electrical single enzyme studies with a focus on recent micro- and nanofluidic tools, which offer new ways of handling and studying small numbers of molecules or even single enzyme molecules. We particularly emphasize nanofluidic devices, which enable the integration of electrochemical transduction and detection.


Subject(s)
Electrochemical Techniques/methods , Enzymes/analysis , Spectrometry, Fluorescence/methods , Microfluidics
16.
Anal Chem ; 87(11): 5470-5, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25927158

ABSTRACT

The interest in analytical devices, which typically rely on the reactivity of a biological component for specificity, is growing rapidly. In this Perspective, we highlight current challenges in all-electrical biosensing as these systems shrink toward the nanoscale and enable the detection of analytes at the single-molecule level. We focus on two sensing principles: nanopores and amperometric microelectrode devices.


Subject(s)
Biosensing Techniques/methods , DNA/analysis , Microelectrodes , Nanopores , Proteins/analysis , Biosensing Techniques/instrumentation
17.
Analyst ; 139(22): 6052-7, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25271709

ABSTRACT

The reference electrode is a key component in electrochemical measurements, yet it remains a challenge to implement a reliable reference electrode in miniaturized electrochemical sensors. Here we explore experimentally and theoretically an alternative approach based on redox cycling which eliminates the reference electrode altogether. We show that shifts in the solution potential caused by the lack of reference can be understood quantitatively, and determine the requirements for accurate measurements in miniaturized systems in the absence of a reference electrode.


Subject(s)
Electrodes , Oxidation-Reduction
18.
ACS Nano ; 8(8): 8278-84, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25105352

ABSTRACT

The sensing of enzymatic processes in volumes at or below the scale of single cells is challenging but highly desirable in the study of biochemical processes. Here we demonstrate a nanofluidic device that combines an enzymatic recognition element and electrochemical signal transduction within a six-femtoliter volume. Our approach is based on localized immobilization of the enzyme tyrosinase in a microfabricated nanogap electrochemical transducer. The enzymatic reaction product quinone is localized in the confined space of a nanochannel in which efficient redox cycling also takes place. Thus, the sensor allows the sensitive detection of minute amounts of product molecules generated by the enzyme in real time. This method is ideally suited for the study of ultra-small-volume systems such as the contents of individual biological cells or organelles.


Subject(s)
Biosensing Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Benzoquinones/chemistry , Electrochemistry , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Gold/chemistry , Models, Molecular , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Phenol/analysis , Phenol/chemistry , Protein Conformation
19.
Article in English | MEDLINE | ID: mdl-25000819

ABSTRACT

The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.


Subject(s)
Electrochemistry/methods , Nanotechnology/methods , Proteins/chemistry , Animals , Electrochemistry/instrumentation , Humans
20.
ACS Nano ; 8(5): 4924-30, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24694343

ABSTRACT

We theoretically investigate reversible adsorption in electrochemical devices on a molecular level. To this end, a computational framework is introduced, which is based on 3D random walks including probabilities for adsorption and desorption events at surfaces. We demonstrate that this approach can be used to investigate adsorption phenomena in electrochemical sensors by analyzing experimental noise spectra of a nanofluidic redox cycling device. The evaluation of simulated and experimental results reveals an upper limit for the average adsorption time of ferrocene dimethanol of ∼200 µs. We apply our model to predict current noise spectra of further electrochemical experiments based on interdigitated arrays and scanning electrochemical microscopy. Since the spectra strongly depend on the molecular adsorption characteristics of the detected analyte, we can suggest key indicators of adsorption phenomena in noise spectroscopy depending on the geometric aspect of the experimental setup.

SELECTION OF CITATIONS
SEARCH DETAIL
...