Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Environ Sci Pollut Res Int ; 30(59): 124374-124381, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945963

ABSTRACT

This study aimed (1) to assess the ability of collembolans Folsomia candida to avoid soils contaminated with three seed dressing insecticides imidacloprid, clothianidin, and fipronil; (2) to assess the effects of the insecticides on collembolans' locomotion behavior; (3) to check if changes in the locomotion behavior would explain the avoidance/preference responses; and (4) to evaluate the possibility to use locomotion behavior as toxicity biomarker of the tested insecticides. Avoidance and locomotion behavior assays with collembolans F. candida were performed with commercial seed dressing formulations of three insecticides (imidacloprid, clothianidin, and fipronil). Results showed no avoidance behavior at any concentration, while a "preference" was observed with increasing concentrations of the three tested insecticides. Significant reductions in the locomotion of exposed collembolans were observed at ≥ 1 mg kg-1 for imidacloprid (18-38%) and fipronil (29-58%) and ≥ 4 mg kg-1 for clothianidin (10-47%). At the higher insecticide concentrations, the collembolans had their trajectories restricted to smaller areas, with a tendency for circular movements. Our results confirm that the "preference" for contaminated soils with neurotoxic substances is likely due to locomotion inhibition impairing the ability of organisms to escape. This effect highlights that only avoidance assays may be not sufficient to assure the safety of some substances and confirm the potential of locomotion behavior as a sensitive toxicity biomarker for neurotoxic insecticides.


Subject(s)
Arthropods , Insecticides , Animals , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Locomotion , Soil , Biomarkers
2.
Sci Total Environ ; 871: 162094, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36764548

ABSTRACT

Nanopesticides, such as nanoencapsulated atrazine (nATZ), have been studied and developed as eco-friendly alternatives to control weeds in fields, requiring lower doses. This review contains a historical and systematic literature review about the toxicity of nATZ to non-target species. In addition, the study establishes protective concentrations for non-target organisms through a species sensitivity distribution (SSD) approach. Through the systematic search, we identified 3197 publications. Of these, 14 studies addressed "(nano)atrazine's toxicity to non-target organisms". Chronological and geographic data on the publication of articles, characterization of nATZ (type of nanocarrier, size, polydispersity index, zeta potential), experimental design (test species, exposure time, measurements, methodology, tested concentrations), and toxic effects are summarized and discussed. The data indicate that cell and algal models do not show sensitivity to nATZ, while many terrestrial and aquatic invertebrates, aquatic vertebrates, microorganisms, and plants have high sensitivity to nAZT. The SSD results indicated that D. similis is the most sensitive species to nATZ, followed by C. elegans, E. crypticus, and P. subcapitata. However, the limitations in terms of the number of species and endpoints available to elaborate the SSD reflect gaps in knowledge of the effects of nATZ on different ecosystems.


Subject(s)
Atrazine , Water Pollutants, Chemical , Animals , Atrazine/toxicity , Ecosystem , Caenorhabditis elegans , Plants , Research Design , Water Pollutants, Chemical/toxicity , Risk Assessment , Aquatic Organisms
3.
J Toxicol Environ Health A ; 86(5): 166-179, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36756738

ABSTRACT

The aim of this study was to examine the chronic toxicity of imidacloprid (IMI), clothianidin (CLO) and fipronil (FIP) as a single exposure, as well as binary mixtures of IMI with CLO or FIP toward collembolans Folsomia candida, which are fauna present in the soil. Chronic toxicity assays were performed following an ISO guideline in a Tropical Artificial Soil (TAS), and the influence on the number and growth of the juveniles produced were determined. The range of nominal concentrations used in the tests with the individual compounds was 0.08-1.28 mg/kg (IMI), 0.079-1.264 mg/kg (FIP) and 0.007-0.112 mg/kg (CLO), whereas the mixture assays were performed with half the value used in the tests with individual compounds. Based upon single exposures, IMI produced a similar impact of reducing reproduction by 50% (EC50 ranging from 0.74 to 0.85 mg/kg) compared to FIP (EC50 = 0.78 mg/kg), whereas CLO was the most toxic to F. candida (EC50 = 0.08 mg/kg). Their mixtures generally resulted in a diminished effect on reproduction, as evidenced by the higher EC50 values. In contrast, in the case of the IMI+FIP combination at high concentrations at the EC50 level, a synergistic effect on toxicity was observed. The single exposure to the three insecticides and the mixture of IMI-FIP also decreased the size of generated juveniles, which was evidenced by the reduction in the proportion of large juveniles and increased proportion of small juveniles. However, both binary mixtures (IMI-FIP and IMI-CLO) presented antagonistic effects as evidenced by less than expected reductions in growth. Data on the toxic effects of IMI in a mixture with other seed dressing insecticides to collembolans provides useful information to environmental risk assessors by diminishing the uncertainties on the ecological risk of exposure to pesticides, enabling soil management degradation by utilizing multiple insecticides.


Subject(s)
Arthropods , Insecticides , Animals , Insecticides/toxicity , Neonicotinoids/toxicity , Soil
4.
Toxicol In Vitro ; 85: 105476, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36126776

ABSTRACT

The diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and its analogues - the dinophysistoxins (DTXs) - are produced by dinoflagellates such as Prorocentrum lima and can bioaccumulate in filter-feeding organisms as they are transferred through the food web. Although there is no assessment of the harmful effects of these toxins on the fish's immune system, this study developed a primary culture protocol for kidney cells from marine fish Centropomus parallelus and evaluated the immunotoxic effects to P. lima extracts containing DSTs. The cells were obtained by mechanical dissociation, segregated with Percoll gradient, and incubated for 24 h at 28 °C in a Leibovitz culture medium supplemented with 2% fetal bovine serum and antibiotics. The exposed cells were evaluated in flow cytometry using the CD54 PE antibody. We obtained >5.0 × 106 viable cells per 1.0 g of tissue that exhibited no cell differentiation. Exposure to 1.2 or 12 ng DST mL-1 stimulated the immune system activation and increased the proportion of activated macrophages and monocytes in 48 to 52% and in 127 to 146%, respectively. The protocol proved to be an alternative tool to assess the immunotoxic effects of DST exposure on fish's anterior kidney cells.


Subject(s)
Bass , Dinoflagellida , Animals , Okadaic Acid/toxicity , Marine Toxins/toxicity , Serum Albumin, Bovine , Kidney , Anti-Bacterial Agents
5.
J Toxicol Environ Health A ; 85(14): 586-590, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35317707

ABSTRACT

The aim of this study was to examine oxidative stress induced by the binary mixture of silver nanoparticles (AgNP) and glyphosate (Gly) in Daphnia magna by measurement of reactive oxygen species (ROS) production, glutathione (GSH) levels, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) as well as malondialdehyde (MDA) content. Acute exposure of Daphnia magna to binary mixture of AgNP and Gly resulted in significant biochemical responses indicative of oxidative damage. This response seemed to be related to imbalance in enzymatic/non-enzymatic antioxidant enzymes associated with intracellular overproduction of ROS and significant increase in MDA levels, indicating that the integrity and function of the cell membrane was damaged. These changes adversely affected the fitness and survival of Daphnia magna and negatively influenced offspring growth and reproduction.


Subject(s)
Metal Nanoparticles , Silver , Animals , Catalase , Daphnia , Glutathione/metabolism , Glycine/analogs & derivatives , Metal Nanoparticles/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism , Silver/toxicity , Superoxide Dismutase , Glyphosate
6.
J Environ Manage ; 304: 114322, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35021594

ABSTRACT

Textile dyeing processes are known for their negative environmental impacts due to the production of aqueous effluents containing toxic dyes. Therefore, new wastewater treatment processes need to be developed to treat such effluents, including Liquid-Liquid Extraction (LLE) process using Ionic Liquids (IL). This work aimed to evaluate the application of the hydrophobic IL trihexyltetradecylphosphonium decanoate to extract black, navy, and royal reactive dyes from water and evaluate the toxicological aspects of the resulting water stream. We investigated the effect of selected parameters, such as pH (2-12), temperature (20-50 °C), salt effects, dye concentration (0.5-50 mg/L), and phase volume ratio (900-9000) on the dye extraction. The results showed extraction yields as high as 97% for the three dyes and an extraction capacity of approximately 300 mg/g for black and navy dyes and 400 mg/g for royal. The toxicity tests involved Lactuca sativa, Triticum aestivium L, and Daphnia magna as bioindicators. The difference between the toxicity of the dye solutions before and after extraction was not statistically significant when L. sativa and Triticum aestivum L were used as bioindicators. However, the extracted solution showed increased toxicity towards D. magna due to traces of IL. Overall, the IL has a high extraction capacity for the black, navy, and royal dyes. Nevertheless, further studies on LLE associated with other processes must be carried out to reduce the risk linked to the toxicity of IL transferred to the water.


Subject(s)
Ionic Liquids , Water Pollutants, Chemical , Animals , Coloring Agents/toxicity , Daphnia , Textile Industry , Textiles , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Environ Technol ; 43(4): 478-488, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32623968

ABSTRACT

Polyacrylonitrile membranes (PAN) have high stability against chemical agents, making them suitable for a wide range of applications as such Ultrafiltration processes. Ultrafiltration membranes composed of PAN/Superfine powder activated carbon (S-PAC) mixtures can be a good research route, aiming the development of a new separation processes for water treatment. The association of materials to form a single product can have technological and economic advantages in separation processes. In this study, S-PAC impregnated into PAN membranes were prepared, characterized and used, as a case study, to remove diclofenac (DCF) from water. The membranes (PAN/S-PAC) were synthesized with different concentrations of S-PAC (0.2, 0.6, 1.0, 3.0 and 5.0 wt%) by a phase inversion process. The results of the TEM characterizations of the S-PAC indicated the presence of micro and nanoparticles (∼10 nm) and tending to form micrometric clusters. The infrared spectra of the membranes were characteristic of PAN; however, vibrational bands attributed to the S-PAC spectrum were also observed, which indicated an interaction between the materials. The case study showed an increase in the water flux and in the DCF rejection efficiency, for composite membranes (PAN/S-PAC) with higher concentration of S-PAC. The results of static adsorption tests indicated that the mechanism of DCF rejection occurred predominantly by adsorption. There were indications that the PAN/S-PAC membranes formed a composite material and the PAN/S-PAC (3.0) presented the best study composition given the results. Although the research is in its initial phase, the results indicated that the composition can improve many water treatment systems.


Subject(s)
Water Pollutants, Chemical , Water Purification , Acrylic Resins , Adsorption , Charcoal , Diclofenac , Membranes, Artificial , Powders , Ultrafiltration
8.
Sci Total Environ ; 811: 151360, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34774938

ABSTRACT

In this study, the acute and multigenerational effects of the individual and combined toxicity of polystyrene nanoplastic (PSNP - 15.6, 31.2 62.5, 125, 250 and 500 mg/L) and glyphosate (Gly - 6.2, 12.5, 25, 50, 100 and 200 mg/L) on the freshwater crustacean Daphnia magna were investigated. The acute toxicity interactions were predicted mathematically using Abbott's model and multiple toxicological endpoints. In the multigenerational tests, we evaluated the effects in filial (F1 and F2) generations of daphnids after parental (F0) exposure to Gly and PSNP, as individual compounds and as a mixture, during their life history. Based on Abbott's model, the combined individual toxicities of Gly and PSNP are increased when they are present as a mixture. This indicates synergy between the components of the mixture, especially in the case of co-exposure to Gly and PSNP in higher equitoxic proportions. The mixture of PSNP and Gly caused an increase in immobility and ROS production and decrease in swimming activity. Multigenerational responses indicated that the exposure of F0 daphnids to Gly and PSNP as a mixture induced effects in the F1 and F2 reproduction parameters in the recovery tests. Thus, the results reported herein provide important information on the interaction of hydrophilic organic and nanoplastic pollutants in aqueous ecosystems. This will be useful in future studies on the toxicity of mixtures and multigenerational effects and provide a basis for management decisions aimed at the protection of environmental health.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Ecosystem , Glycine/analogs & derivatives , Microplastics , Polystyrenes/toxicity , Reproduction , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Glyphosate
9.
Plants (Basel) ; 10(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685927

ABSTRACT

The interaction effects of organic ligand ethylene diamine tetra-acetic acid (EDTA) and oxide nanoparticles (magnetite Fe3O4-NPs and copper CuO-NPs) were investigated during a 72 h period on two green algal species-Chlamydomonas reinhardtii under freshwater conditions and Chlamydomonas euryale under saltwater conditions. Fe3O4-NPs had larger agglomerates and very low solubility. CuO-NPs, having smaller agglomerates and higher solubility, were more toxic than Fe3O4-NPs in freshwater conditions for similar mass-based concentrations, especially at 72 h under 100 mg L-1. Furthermore, the effect of EDTA increased nanoparticle solubility, and the salinity caused a decrease in their solubility. Our results on C. euryale showed that the increase in salinity to 32 g L-1 caused the formation of larger nanoparticle agglomerates, leading to a decrease in the toxicity impact on algal cells. In addition, EDTA treatments induced a toxicity effect on both freshwater and saltwater Chlamydomonas species, by altering the nutrient uptake of algal cells. However, C. euryale was more resistant to EDTA toxicity than C. reinhardtii. Moreover, nanoparticle treatments caused a reduction in EDTA toxicity, especially for CuO-NPs. Therefore, the toxicity impact caused by these environmental factors should be considered in risk assessment for metallic nanoparticles.

10.
Chemosphere ; 285: 131463, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34271471

ABSTRACT

The incorporation of nanomaterials in binders in the paving area has been studied to improve the mechanical behavior of asphalt mixtures. However, asphalt mixture compounds are susceptible to leaching and deposition in the environment. In this context, this research aimed to investigate the toxic effect of two leachate extracts from asphalt mixtures nanomodified with 2% carbon nanotube and 3% organophilic nanoclay, compared to conventional mixture, using Daphnia magna and Landoltia punctata as test organisms. The nanomaterials were characterized to confirm morphology, stability and effective diameter. Extracts were chemically characterized using the Fourier-Transform Infrared Spectroscopy (FTIR) technique, which indicated presence of functional groups of the asphalt binder in greater intensity in the leachate from conventional mixture. Acute toxicity with D. magna indicated EC50,48h of 83.5 ± 6.2 mL/L for leachate extract from conventional mixture, 306.0 ± 87.6 mL/L for leachate extract from mixture with nanoclay and 464.8 ± 32.1 mL/L for leachate extract from mixture with carbon nanotube. No leachate caused significant chronic toxicity. As for L.punctata, concentrations that caused 50% growth inhibition were 127.5 mL/L for the leachate extract from mixture with carbon nanotube, 196.9 mL/L for the leachate extract from mixture with nanoclay and 205 mL/L for the leachate extract from conventional mixture. For these test organisms, there is no evidence of negative impacts directly associated with the use of the present nanomaterials in asphalt mixtures. The incorporation of these nanos may also reduce the acute toxicity of the mixtures.


Subject(s)
Araceae , Daphnia , Animals , Hydrocarbons , Plant Extracts
11.
J Hazard Mater ; 419: 126491, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34323739

ABSTRACT

This study aimed to assess the chronic toxicity and risk of clothianidin in a seed dressing formulation to non-target soil invertebrates. The toxicity assays were performed with two oligochaetes (earthworms Eisenia andrei and enchytraeids Enchytraeus crypticus) and three collembolans (Folsomia candida, Proisotoma minuta and Sinella curviseta) species following ISO protocols. Risk assessment (via Hazard Quotient approach - HQ) was based on the hazardous concentrations for 95% of the species (HC5), derived from chronic Species Sensitivity Distributions (SSD) for clothianidin, and on its predicted environmental concentrations (PEC). Four SSD scenarios were generated with literature and/or this study data, following different data selection criteria (i.e., general, only data from tests using similar formulations, similar soils, or identical soil/formulation). In our experiments, a higher clothianidin toxicity (EC50-based) was found for collembolans (varying from 0.11 to 0.28 mg kg-1 between species) followed by the earthworms (4.35 mg kg-1), while the enchytraeids were the least sensitive (33.5 mg kg-1). HQ indicated a significant risk of clothianidin to soil invertebrates because the estimated PEC were at least 16.6 times higher than HC5 and are expected to affect the whole group of collembolans. Despite the criteria for data inclusion have influenced the HC5 values, no substantial changes were observed for the risk outcomes. To our knowledge, this is the first study assessing the chronic ecological risk of clothianidin to beneficial soil fauna based on a probabilistic SSD approach. Data from this study can help to derive more reliable protection thresholds for clothianidin in soils.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Guanidines , Invertebrates , Neonicotinoids , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Thiazoles
12.
Ecotoxicol Environ Saf ; 212: 111979, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33513482

ABSTRACT

Silicon oxide (SiO2) nanostructures (SiO2NS) are increasingly being incorporated into an array of products, notably in the food, pharmaceutical, medical industries and in water treatment systems. Amorphous SiO2NS have low toxicity, however, due to their great versatility, superficial modifications can be made and these altered structures require toxicological investigation. In this study, SiO2NS were synthetized and amine-functionalized with the molecules (3-aminopropyl)triethoxysilane (APTMS) and 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEAEAPTMS), named SiO2NS@1 and SiO2NS@3, respectively. The bare SiO2NS, SiO2NS@1 and SiO2NS@3 samples were characterized and the influence of the culture medium used in the toxicological assays was also evaluated. The effect of amine functionalization of SiO2NS was investigated through acute and chronic toxicity assays with Daphnia magna. Modifications to ultrastructures of the intestine and eggs of these organisms were observed in TEM and SEM analysis. The toxicity was influenced by the surface modifications and a possible Trojan horse effect was highlighted, particularly in the case of chronic exposure. Exposure to all NSs promoted alterations in the microvilli and mitochondria of the D. magna intestine and some damage to egg cells was also observed. The results demonstrate the importance of carrying out a full characterization of these materials, since surface modifications can enhance their toxic potential.


Subject(s)
Daphnia/physiology , Nanostructures/toxicity , Silicon Dioxide/toxicity , Amines , Animals , Biological Assay , Daphnia/drug effects , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity
13.
Environ Toxicol Chem ; 40(4): 1123-1131, 2021 04.
Article in English | MEDLINE | ID: mdl-33270267

ABSTRACT

Multigenerational toxicological effects of a binary mixture of silver nanoparticles (AgNPs) with glyphosate were identified in Daphnia magna using acute and chronic toxicity tests. Acute toxicity interactions were analyzed with the Abbott method. In the chronic tests, the survival, growth, reproduction, and age at first brood were evaluated for the parents and the exposed (F1E) and non-exposed (F1NE) descendants. The scales tested for binary mixture, at the acute level, presented antagonistic and additive interactions, possibly associated with the complexation of the AgNPs by glyphosate. Multigenerational chronic effects related to the parameters, reproduction, and age at first brood were observed in the descendants tested with the individual compounds, with no recovery for F1E and F1NE. In organisms exposed to binary mixture, there was a delay in the age at first brood and also a significant change in the reproduction parameter, with a strong reduction for the parents, F1E, and F1NE, indicating a higher toxicity than the compounds tested individually. Although the results for acute interactions between AgNP and glyphosate did not provide clear evidence, multigenerational chronic binary mixture trials have resulted in unexpected toxicity compared with individual treatments, increasing the concerns associated with this co-exposure in other scenarios. Therefore, the interaction of binary mixture with the organisms merits further investigation and the results reported in the present study will be useful in this regard. Environ Toxicol Chem 2021;40:1123-1131. © 2020 SETAC.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Animals , Daphnia , Glycine/analogs & derivatives , Metal Nanoparticles/toxicity , Reproduction , Silver/toxicity , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity , Glyphosate
14.
Nanotoxicology ; 14(9): 1258-1270, 2020 11.
Article in English | MEDLINE | ID: mdl-32909501

ABSTRACT

Exposure to nanomaterials (NMs) can be considered as human, occupational or environmental. Occupational exposure may be experienced by the workers and/or researchers who develop and produce these products and the hazards inherent to exposure are not yet fully known. Quantitative and qualitative methods are available to estimate the occupational risks associated with the handling of NMs, however, both have limitations. In this context, the objective of this study was to create a Bayesian network (BN) that will allow an assessment of the occupational risk associated with the handling of NMs in research laboratories. The BN was developed considered variables related to exposure, the hazards associated with NMs and also the existing control measures in the work environment, such as collective protection equipment (CPE), administrative measures and personal protection equipment (PPE). In addition to assessing the occupational risk, simulations were carried out by the laboratory manager to obtain information on which actions should be taken to reduce the risk. The development of a BN to assess the occupational risk associated with the handling of NMs is a novel aspect of this study. As a distinctive feature, the BN has measurement control variables in addition to considering CPE, administrative measures and PPE. An advantage of this network in relation to other risk assessment models is that it allows the easy execution of simulations and provides a guide for a decision making by identifying which actions should be taken to minimize the risk.


Subject(s)
Air Pollutants, Occupational/toxicity , Laboratories/standards , Models, Statistical , Nanostructures/toxicity , Occupational Exposure/adverse effects , Workplace/standards , Air Pollutants, Occupational/chemistry , Bayes Theorem , Humans , Laboratories/statistics & numerical data , Nanostructures/chemistry , Occupational Exposure/prevention & control , Occupational Exposure/statistics & numerical data , Protective Devices , Risk Assessment/statistics & numerical data , Safety Management , Workplace/statistics & numerical data
15.
J Toxicol Environ Health A ; 83(9): 363-377, 2020 05 02.
Article in English | MEDLINE | ID: mdl-32414304

ABSTRACT

The objective of this study was to examine the cytotoxic effects of binary mixtures of Al2O3 and ZnO NPs using mouse fibroblast cells (L929) and human bronchial epithelial cells (BEAS-2B) as biological test systems. The synergistic, additive, or antagonistic behavior of the binary mixture was also investigated. In toxicity experiments, cellular morphology, mitochondrial function (MTT assay), apoptosis, nuclear size and shape, clonogenic assays, and damage based upon oxidative stress parameters were assessed under control and NPs exposure conditions. Although Abbott modeling results provided no clear evidence of the binary mixture of Al2O3 and ZnO NPs exhibiting synergistic toxicity, some specific assays such as apoptosis, nuclear size and shape, clonogenic assay, activities of antioxidant enzymatic enzymes catalase, superoxide dismutase, and levels of glutathione resulted in enhanced toxicity for the mixtures with 1 and 1.75 toxic units (TU) toward both cell types. Data demonstrated that co-presence of Al2O3 and ZnO NPs in the same environment might lead to more realistic environmental conditions. Our findings indicate cytotoxicity of binary mixtures of Al2O3 and ZnO NPs produced greater effects compared to toxicity of either individual compound.


Subject(s)
Aluminum Oxide/toxicity , Bronchi/drug effects , Epithelial Cells/drug effects , Fibroblasts/drug effects , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Animals , Humans , Mice , Models, Animal
16.
Environ Res ; 182: 108987, 2020 03.
Article in English | MEDLINE | ID: mdl-31812936

ABSTRACT

Aluminum oxide nanoparticles (Al2O3 NPs) can be found in different crystalline phases, and with the emergence of nanotechnology there has been a rapid increase in the demand for Al2O3 NPs in different engineering areas and for consumer products. However, a careful evaluation of the potential environmental and human health risks is required to assess the implications of the release of Al2O3 NPs into the environment. Thus, the objective of this study was to investigate the toxicity of two crystalline phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), toward Daphnia magna and evaluate the risk to the aquatic ecology of Al2O3 NPs with different crystalline phases, based on a probabilistic approach. Different techniques were used for the characterization of the Al2O3 NPs. The toxicity toward Daphnia magna was assessed based on multiple toxicological endpoints, and the probabilistic species sensitivity distribution (PSSD) was used to estimate the risk of Al2O3 NPs to the aquatic ecology. The results obtained verify the toxic potential of the NPs toward D. magna even in sublethal concentrations, with a more pronounced effect being observed for η-Al2O3 NPs. The toxicity is associated with an increase in the reactive oxygen species (ROS) content and deregulation of antioxidant enzymatic/non-enzymatic enzymes (CAT, SOD and GSH). In addition, changes in MDA levels were observed, indicating that D. magna was under oxidative stress. The most prominent chronic toxic effects were observed in the organisms exposed to η-Al2O3 NPs, since the lowest LOEC was 3.12 mg/L for all parameters, while for α-Al2O3 NPs the lowest LOEC was 6.25 mg/L for longevity, growth and reproduction. However, the risk assessment results indicate that, based on a probabilistic approach, Al2O3 NPs (alpha, gamma, delta, eta and theta) only a very limited risk to organisms in surface waters.


Subject(s)
Aluminum Oxide , Metal Nanoparticles , Water Pollutants, Chemical , Aluminum Oxide/toxicity , Animals , Daphnia , Humans , Metal Nanoparticles/toxicity , Oxidative Stress , Risk Assessment , Water Pollutants, Chemical/toxicity
17.
Eng. sanit. ambient ; 24(6): 1089-1094, nov.-dez. 2019. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1056128

ABSTRACT

ABSTRACT This work's objective was to verify the leachates toxicity from pilot reactors (PR) simulating a landfill containing different concentrations of silver nanoparticles (AgNP). Acute toxicity tests (48 h) with Daphnia magna were carried out in leachates containing 50, 150 and 450 mg AgNP.kg-1, in addition to a blank for control. Toxicity tests with the pure solution of silver nanoparticle and leachates resulted by the reactors were performed. The acute toxicity tests performed with D. magna confirmed the toxicity of the leachates, as well as confirmed that the silver nanoparticles are toxic, presenting EC50 (48 h) of 0.63 µg.L-1 of pure nanoparticle and ranging from 1.52 to 3.37% for the leachates. Overall, the results from the present study indicate that exposures of aquatic invertebrates to silver nanoparticles could have important ecological effects on lower trophic levels in aquatic ecosystems. The results may contribute to a better understanding of the quality of municipal solid waste (MSW) landfill leachates, with reference to nanoparticle interference and consequent treatment efficiency.


RESUMO O objetivo deste trabalho foi verificar a toxicidade de lixiviados de reatores piloto (RP) simulando um aterro contendo diferentes concentrações de nanopartículas de prata (AgNP). Testes de toxicidade aguda (48 h) com Daphnia magna foram realizados em lixiviados contendo 50, 150 e 450 mg de AgNP.kg-1, além de um branco para controle. Foram realizados testes de toxicidade com a solução pura de nanopartículas de prata e lixiviados resultantes dos reatores. Os testes de toxicidade aguda realizados com D. magna confirmaram a toxicidade dos lixiviados, bem como confirmaram que as nanopartículas de prata são tóxicas, apresentando EC50 (48 h) de 0,63 µg.L-1 de nanopartículas puras e variando de 1,52 a 3,37% para os lixiviados. No geral, os resultados do presente estudo indicam que a exposição dos invertebrados aquáticos a nanopartículas de prata pode ter importantes efeitos ecológicos nos níveis tróficos inferiores nos ecossistemas aquáticos. Os resultados podem contribuir para a melhor compreensão da qualidade dos lixiviados de aterros sanitários de resíduos sólidos urbanos (RSU), com referência à interferência de nanopartículas e consequente eficiência de tratamento destes.

18.
Environ Toxicol Chem ; 38(10): 2101-2110, 2019 10.
Article in English | MEDLINE | ID: mdl-31233230

ABSTRACT

There are few studies on nanoplastic that propose quantification of the amount ingested combined with evaluation of the toxic effects on aquatic organisms. We propose 2 methods to quantify the amount of polystyrene nanoplastic (PSNP) ingested by Daphnia magna: fluorescence intensity, where a fluorescent monomer (F) is added to the PSNP and quantified through fluorescence light microscopy, and total aluminum quantification, where PSNP is synthesized with Al2 O3 metal-core nanoparticles and used for quantification of the nanoplastic ingested by the organism Daphnia magna using inductively coupled plasma-mass spectrometry. In addition, the PSNP was functionalized with palmitic acid to simulate the environmental conditions leading to biological and chemical transformations. Acute and chronic toxicity tests were performed with fluorescent PSNP (PSNP/F) and palmitic acid-functionalized PSNP/F (PSNP/F-PA). The ingestion quantified was higher by factors of 2.8 and 3.0 for PSNP/F-PA and 1.9 and 1.7 for PSNP/F applying the fluorescence intensity and total Al quantifying methods, respectively, when compared to PSNP. These results are consistent with the data obtained in the toxicity tests, which showed an approximately 3 times increase in the adverse effect of PSNP/F-PA on the mobility and reproduction of the organisms. Thus, the strong inhibition of D. magna reproduction caused by PSNP/F-PA in the chronic toxicity tests could be associated with a greater amount of this nanoplastic being ingested by the organisms. Environ Toxicol Chem 2019;38:2101-2110. © 2019 SETAC.


Subject(s)
Daphnia/chemistry , Metals/chemistry , Nanoparticles/toxicity , Water Pollutants, Chemical/analysis , Aluminum Oxide/chemistry , Animals , Daphnia/drug effects , Daphnia/growth & development , Mass Spectrometry , Nanoparticles/chemistry , Optical Imaging , Polystyrenes/chemistry , Reproduction/drug effects , Toxicity Tests , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
19.
Chemosphere ; 224: 237-246, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30822730

ABSTRACT

Among nanomaterials, zinc oxide (ZnO) is notable for its excellent biocidal properties. In particular, it can be incorporated in mortars to prevent biofouling. However, the morphology of these nanomaterials (NMs) and their impact on the action against biofouling are still unknown. This study aimed to assess how the morphology and surface modification can affect the ecotoxicology of ZnO NMs. The morphologies evaluated were nanoparticles (NPs) and nanorods (NRs), and the ZnO NMs were tested pure and with surface modification through amine functionalization (@AF). The toxic effects of these NMs were evaluated by acute and chronic ecotoxicity tests with the well-established model microcrustacean Daphnia magna. The ZnO NMs were characterized by transmission electron microscopy, X-ray diffraction and infrared spectroscopy. The EC5048h to D. magna indicated higher acute toxicity of ZnO@AF NRs compared to all tested NMs. Regarding the chronic test with D. magna, high toxic effects on reproduction and longevity were observed with ZnO@AF NRs and effects on growth were observed with ZnO NRs. In general, all tested ZnO NMs presented high toxicity when compared to the positive control, and the NRs presented higher toxicity than NPs in all tested parameters, regardless of the form tested (pure or with surface modification). Additionally, the pathways of ecotoxicity of the tested ZnO NMs was found to be related to combined factors of Zn ion release, effective diameter of particles and NM internalization in the organism.


Subject(s)
Daphnia/drug effects , Ecotoxicology/methods , Nanostructures/toxicity , Zinc Oxide/toxicity , Animals , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Nanotubes/toxicity , Nanotubes/ultrastructure , Surface Properties , Toxicity Tests , Zinc Oxide/chemistry
20.
Chemosphere ; 221: 640-646, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30669109

ABSTRACT

The widespread use of diesel as a transportation fuel and the introduction of biodiesel into the world energy matrix increase the likelihood of aquatic contamination with these fuels. In this case, it is important to know the environmental impacts caused by water-soluble fraction (WSF) of these fuels, since it is the portion that can result in long-term impacts and affect regions far away from the location of a spill. Therefore, we evaluated and compared the aquatic ecotoxicity of the WSF of biodiesel and diesel through acute ecotoxicity tests with the aquatic microcrustacean Daphnia magna and the marine bacteria Aliivibrio fischeri, as well as chronic ecotoxicity tests with D. magna. The WSF of diesel was 2.5-4 folds more toxic than the WSF of biodiesel in acute ecotoxicity tests. Similarly, a comparison of the chronic ecotoxicity demonstrated that the WSF of diesel was more toxic than the WSF of biodiesel. WSF of diesel causes chronic effects on reproduction, longevity and growth of D. magna (NOEC was 12.5, 12.5, 6.25%, respectively), while WSF of biodiesel did not present significantly different results compared to the control for any of the parameters evaluated in any of the dilutions tested (NOEC> 25%). To the best of our knowledge, this is the first study that compares the chronic ecotoxicity of WSF of diesel and biodiesel on D. magna.


Subject(s)
Biofuels/toxicity , Gasoline/toxicity , Water Pollutants, Chemical/analysis , Aliivibrio fischeri/drug effects , Animals , Daphnia/drug effects , Daphnia/growth & development , Ecotoxicology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...