Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 152: 104639, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33238197

ABSTRACT

The lectins are carbohydrate-binding proteins that are highly specific to sugar groups associated to other molecules. In addition to interacting with carbohydrates, a number of studies have reported the ability of these proteins to modulate the activity of several antibiotics against multidrug-resistant (MDR) strains. In this study, we report the enhanced antibacterial activity of the gentamicin against MDR strains when complexed with a lectin from Canavalia ensiformis seeds (ConA). Hemagglutination activity test and intrinsic fluorescence spectroscopy revealed that the gentamicin can interact with ConA most likely via the carbohydrate recognition domain (CRD) with binding constant (Kb) value estimated of (0.44 ± 0.04) x 104 M-1. Furthermore, the minimum inhibitory concentrations (MIC) obtained for ConA against all strains studied were not clinically relevant (MIC ≥ 1024 µg/mL). However, when ConA was combined with gentamicin, a significant increase in antibiotic activity was observed against Staphylococcus aureus and Escherichia coli. The present study showed that ConA has an affinity for gentamicin and modulates its activity against MDR strains. These results indicate that ConA improves gentamicin performance and is a promising candidate for structure/function analyses.


Subject(s)
Canavalia , Gentamicins , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Lectins , Microbial Sensitivity Tests
2.
Biomed Res Int ; 2013: 253483, 2013.
Article in English | MEDLINE | ID: mdl-24490151

ABSTRACT

Acacia farnesiana lectin-like protein (AFAL) is a chitin-binding protein and has been classified as phytohaemagglutinin from Phaseolus vulgaris (PHA). Legume lectins are examples for structural studies, and this family of proteins shows a remarkable conservation in primary, secondary, and tertiary structures. Lectins have ability to reduce the effects of inflammation caused by phlogistic agents, such as carrageenan (CGN). This paper explains the anti-inflammatory activity of AFAL through structural comparison with anti-inflammatory legume lectins. The AFAL model was obtained by molecular modeling and molecular docking with glycan and carrageenan were performed to explain the AFAL structural behavior and biological activity. Pisum sativum lectin was the best template for molecular modeling. The AFAL structure model is folded as a ß sandwich. The model differs from template in loop regions, number of ß strands and carbohydrate-binding site. Carrageenan and glycan bind to different sites on AFAL. The ability of AFAL binding to carrageenan can be explained by absence of the sixth ß -strand (posterior ß sheets) and two ß strands in frontal region. AFAL can inhibit pathway inflammatory process by carrageenan injection by connecting to it and preventing its entry into the cell and triggers the reaction.


Subject(s)
Anti-Inflammatory Agents/chemistry , Inflammation/drug therapy , Models, Molecular , Plant Lectins/chemistry , Acacia , Animals , Anti-Inflammatory Agents/metabolism , Carrageenan/toxicity , Chitin/chemistry , Crystallography, X-Ray , Inflammation/chemically induced , Inflammation/pathology , Mice , Molecular Docking Simulation , Phytohemagglutinins/chemistry , Phytohemagglutinins/metabolism , Plant Lectins/administration & dosage , Plant Lectins/isolation & purification , Plant Lectins/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...