Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 48(11): 4103-12, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15504828

ABSTRACT

The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were >/=0.5 microg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 microg/ml. Single-step studies showed mutation frequencies <5.0 x 10(-10) to 3.5 x 10(-7) for GW 773546, GW 708408, and telithromycin for macrolide-susceptible strains and 1.1 x 10(-7) to >4.3 x 10(-3) for resistant strains. The postantibiotic effects of GW 773546, GW 708408, and telithromycin were 2.4 to 9.8 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Streptococcus pneumoniae/drug effects , Azithromycin/pharmacology , Clarithromycin/pharmacology , Clindamycin/pharmacology , Drug Resistance, Bacterial , Erythromycin/pharmacology , Genes, Bacterial , Ketolides/pharmacology , Microbial Sensitivity Tests , Mutation/genetics , Streptococcus pneumoniae/genetics , Time Factors
2.
J Antimicrob Chemother ; 52(6): 1018-21, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14585854

ABSTRACT

The roles of beta-lactamase and alterations in penicillin-binding protein in the development of amoxicillin and amoxicillin/clavulanate resistance in two beta-lactamase-positive, amoxicillin/clavulanate-resistant (BLPACR) strains of Haemophilus influenzae were investigated. Seven beta-lactamase-negative, ampicillin-resistant (BLNAR) strains were also studied for comparison of their resistance mechanisms. All strains had been recovered from patients in Japan. The TEM type beta-lactamase of the two BLPACR strains had 100% homology with the amino acid sequences of published TEM-1 beta-lactamase, showing that amoxicillin/clavulanate resistance was not associated with mutations in this beta-lactamase. However, these strains, as well as the seven BLNAR strains, had multiple mutations in ftsI, which encodes penicillin binding protein 3 (PBP3). The transformation of H. influenzae Rd strain with amplified ftsI genes from two BLPACR and two BLNAR strains enabled the selection of amoxicillin/clavulanate-resistant transformants with the same mutations as their parent strains. We concluded that amoxicillin/clavulanate resistance in the two BLPACR strains was due to changes in PBP3. The possibility of the presence of an extended spectrum beta-lactamase was excluded in the BLPACR strains studied.


Subject(s)
Amino Acid Substitution/genetics , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Drug Therapy, Combination/pharmacology , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Muramoylpentapeptide Carboxypeptidase/genetics , Muramoylpentapeptide Carboxypeptidase/metabolism , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Haemophilus Infections/microbiology , Microbial Sensitivity Tests , Mutation/genetics , Mutation/physiology , Penicillin-Binding Proteins , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...