Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(1-2): 015201, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797931

ABSTRACT

We report here the results of comprehensive plasma characterization and diagnostics by analyzing time-resolved absorption spectra of short ultrabroadband (0.1-50 THz) pulses propagated through the test plasma. Spectral analysis of plasma-induced absorption of such THz pulses provides very direct, in situ, high dynamical range, potentially single-shot access to the plasma density, plasma decay time, electron temperature, and ballistic dynamics of the plasma expansion. We have demonstrated a proof-of-principle measurement of plasma created by an intense laser beam. In particular, we showed a reliable measurement of plasma densities from around 10^{16} to 10^{20}cm^{-3}. Apart from the plasma parameters, this method allowed us to reconstruct peak intensity inside the plasma spot and to observe a very early stage of plasma evolution after its excitation.

2.
Materials (Basel) ; 15(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683217

ABSTRACT

One of the methods to improve the performance of a heterogeneous electrocatalyst is the dispersion of a catalytic material on a suitable substrate. In this study, femtosecond laser ablation was used to prepare very rough but also ordered copper surfaces consisting of vertical, parallel ridges. Then, a molybdenum sulfide coating was electrochemically deposited onto these surfaces. It was observed by profilometry that the average roughness of the surface after coating with MoS2 had decreased, but the developed surface area still remained significantly larger than the projected surface area. The electrodes were then used as an electrocatalyst for the hydrogen evolution reaction in acidic media. These were highly efficient, reaching 10 mA cm-2 of HER current at a -181 mV overpotential and a Tafel slope of ~39 mV dec-1. Additionally, scanning electrochemical microscopy was used to observe whether hydrogen evolution would preferentially occur in certain spots, for example, on the peaks, but the obtained results suggest that the entire surface is active. Finally, the electrochemical impedance spectroscopy data showed the difference in the double-layer capacitance between the ablated and non-ablated surfaces (up to five times larger) as well as the parameters that describe the improved catalytic activity of fs-Cu/MoS2 electrodes.

3.
Appl Opt ; 59(6): 1618-1626, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32225665

ABSTRACT

Geometric phase retarders-such as q-plates and S-waveplates-have found wide applications due to simplicity of operational principles and flexibility for the generation of azimuthally symmetric polarization states and optical vortices. Ellipticity of the polarization vector and phase of the generated beam strongly depend on the retardation of the plate. Real devices usually have retardation value slightly different than the nominated one. Previously unattended perturbation of the retardation leads to asymmetry in intensity distribution and variation of ellipticity of the local polarization vector of the generated beam. We elucidate that controlled and intentionally driven azimuthally variable, oscillating perturbation of the retardation reveals the possibility to avoid distortions in the generated beam and leads to the recovery of the symmetrically distributed intensity and polarization (with zero ellipticity) of the beam. Described recovery of the desired polarization state could find application for generation of the high purity beam with azimuthally symmetric polarization, in which the local polarization ellipse has zero ellipticity.

4.
Opt Express ; 18(9): 8767-71, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588720

ABSTRACT

We report on the generation of a spiraling zero order Bessel beam by means of conventional axicon and the phase hologram. Obtained results are in a fairly good agreement with the theoretical predictions.

5.
Opt Lett ; 34(14): 2129-31, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19823524

ABSTRACT

The question that we are addressing concerns the possibility of creating a zeroth-order Bessel-like beam that spirals around the axis of propagation. The analytical features of the beam propagation are studied theoretically. Approximations to such a light field can be experimentally realized by using an axicon and a hologram. The beam potentially can attract interest in microfabrication applications.

6.
Opt Express ; 17(10): 8193-200, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19434151

ABSTRACT

Visualization of the energy density flux gives a unique insight into the propagation properties of complex ultrashort pulses. This analysis, formerly relegated to numerical investigations, is here shown to be an invaluable experimental diagnostic tool. By retrieving the spatio-temporal amplitude and phase we experimentally obtain the energy density flux within complex ultrashort pulses generated by filamentation in a nonlinear Kerr medium.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 047603, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17155221

ABSTRACT

Experiments show that the spatiotemporal spectral broadening of an intense pump pulse in a Kerr medium in the presence of strong higher-order dispersion does not lead to symmetric profiles, and hence cannot be interpreted as standard modulational instability of a plane and monochromatic nonlinear eigenmode. The highly asymmetric features of the generated (K perpendicular,Omega) spectrum are due to odd-order dispersion terms and are interpreted in terms of spontaneous formation of stationary conical waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...