Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Dent ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086425

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the surface roughness, contact angle, and adhesion of Candida albicans to computer-aided designing/computer-aided manufacturing (CAD/CAM) and heat-polymerized (HP) denture base materials. MATERIALS AND METHODS: Specimens were allocated to six groups based on the composition of studied denture base materials, HP acrylic resin, milled resins (AvaDent and IvoCad), and 3D-printed resins (ASIGA, FormLabs, and NextDent). Ten specimens per group were used for each test (n = 10/test). Surface roughness and contact angles were analyzed using profilometer and goniometer, respectively. Adhesion of C. albicans was counted using colony-forming unit (CFU/mL). Means and standard deviations were calculated, and then one-way analysis of variance (ANOVA), followed by Tukey's post hoc test. Correlation of Candida adhesion and surface parameters was determined by using Pearson's correlation analysis. RESULTS: No statistically significant difference was noted in surface roughness between HP, milled, and 3D-printed denture base resins except NextDent, which showed significantly higher roughness in comparison to all other resins (p = 0.001). In terms of contact angle, milled resins had the lowest value, followed by HP, ASIGA, and FormLabs, whereas NextDent showed the highest contact angle (p = 0.001). C. albicans adhesion showed no significant difference between all denture base resins. A positive and significant correlation was found between C. albicans adhesion and contact angle (p = 0.003), while no correlation was reported between C. albicans adhesion and surface roughness (p = 0.523). CONCLUSION: Adhesion of C. albicans was similar in all tested specimens. Surface roughness showed no significant difference between all groups except NextDent, which had the highest value. Milled denture base resins had the lowest contact angle among all groups.

2.
Environ Res ; 237(Pt 1): 116905, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37597831

ABSTRACT

Membranes are receiving significant attention to remove emerging organic micropollutants (OMPs) from wastewater and natural water sources. Herein, we report the facile preparation of a novel thin-film nanocomposite (TFN) membrane with high permeability and efficient removal of OMPs. ZnO nanoparticles were first synthesized using the co-precipitation method and functionalized with N1-(3-Trimethoxysilylpropyl)diethylenetriamine to make the surface rich with amine groups and then synthesized nanomaterials were covalently cross-linked into the active layer during the interfacial polymerization (IP) process. The performance of the membranes containing the cross-linked ZnO was significantly better than the non-cross-linked ZnO NPs containing membranes. Adding multiple hydrophilic groups and entities on the surface significantly decreased the contact angle (from ∼60° to 20°). SEM images confirmed the uniform presence and homogeneous distribution of the functionalized NPs throughout the entire membrane surface. Zeta potential measurements showed the modified membranes have a lower negative charge than the pristine membranes. Filtration studies revealed a significant increase in permeability ascribed to the creation of nanochannels in the membrane's active layer. The modified membranes outperformed commercial NF membranes in removing four common OMPs with rejection efficiencies of ∼30%, 64%, 60%, and 70% for Sulfamethoxazole, Amitriptyline, Omeprazole, and Loperamide HCl, respectively. The higher removal efficiency was attributed to the weakened hydrophobic interactions due to the presence of hydrophilic moieties and a stronger size exclusion effect. Moreover, the modified membranes showed high resistance to bacterial adhesion in static conditions.

3.
J Environ Manage ; 338: 117682, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003228

ABSTRACT

Trace organic compounds from effluent streams are not completely removed by conventional purification techniques and hence, contaminating groundwater sources. Herein, we report the removal efficiency and rejection mechanisms of three common pharmaceutically active compounds (PhACs); caffeine (CFN), omeprazole (OMZ), and sulfamethoxazole (SMX), using commercial nanofiltration (NF) and reverse osmosis (RO) membranes with different surface characteristics. The RO membranes showed near-complete removal of all PhACs with rejection rates >99%. On the other hand, retention capabilities for the NF membranes varied and were influenced by the characteristics of the PhACs, membranes, and the feed solution. In general, during long-term testing, the rejection did not show much variation and followed a trend compatible with the size exclusion (steric hindrance) mechanism. When a real matrix was used, the rejection of CFN by the more tight NF membranes, HL TFC and NFW decreased by ∼10%, whereas the removal of SMX by the loose NF membrane, XN45, increased by the same ratio. In short-term testing, the rejection of negatively charged SMX increased significantly (∼20-40%) at a higher pH of ∼8 and in the presence of salts. Fouling by the PhACs was more severe on the high-flux NF membranes, HL TFC and XN45, as witnessed by the significant change in Contact angle (CA) values (∼25-50°) as well as the flux decline (∼15%) during long-term testing. To summarize, the removal of PhACs by membranes is a complex phenomenon and depends upon a combination of several factors.


Subject(s)
Water Purification , Water , Water Purification/methods , Osmosis , Membranes, Artificial , Filtration/methods
4.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234329

ABSTRACT

The objective of this study is to examine the physiomechanical and surface properties of 3D-printed zirconia in comparison to milled zirconia. A total of 80 disc-shaped (14 × 1.5 ± 0.2 mm) specimens (20 milled and 60 3D-printed (at three different orientations; horizontal, vertical, and tilted)) were manufactured from 3-mol% yttria-stabilized tetragonal zirconia. Five specimens per group were evaluated for crystalline phase, grain size, density, porosity, surface roughness, wettability, microhardness, and SEM analysis of the surface. Biaxial flexural strength (BFS) was measured (n = 15) followed by Weibull analysis and SEM of fractured surfaces. Statistical analysis was performed using one-way ANOVA and Tukey's post hoc test at α = 0.05. All groups showed a predominant tetragonal phase, with a 450 nm average grain size. There was no significant difference between groups with regards to density, porosity, and microhardness (p > 0.05). The tilted group had the highest surface roughness (0.688 ± 0.080 µm), significantly different from the milled (p = 0.012). The horizontal group presented the highest contact angle (89.11 ± 5.22°), significantly different from the milled and tilted (p > 0.05). The BFS of the milled group (1507.27 ± 340.10 MPa) was significantly higher than all other groups (p < 0.01), while vertical and tilted had a similar BFS that was significantly lower than horizontal (p < 0.005). The highest and lowest Weibull modulus were seen with tilted and milled, respectively. Physical properties of all groups were comparable. The surface roughness of the tilted group was higher than milled. The horizontal group had the highest hydrophobicity. Printing orientations influenced the flexural strength of 3D-printed zirconia. Clinical implications: This study demonstrates how the printing orientation affects the physiomechanical characteristics of printed zirconia.

5.
Polymers (Basel) ; 13(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34771283

ABSTRACT

Fouling not only deteriorates the membrane structure but also compromises the quality of the permeate and has deleterious consequences on the membrane operation. In the current study, a commercial thin film composite nanofiltration membrane (NF90) was modified by sequentially depositing oppositely charged polycation (poly(allylamine hydrochloride)) and polyanion (poly(acrylic acid)) polyelectrolytes using the layer-by-layer assembly method. The water contact angle was decreased by ~10° after the coating process, indicating increased hydrophilicity. The surface roughness of the prepared membranes decreased from 380 nm (M-0) to 306 nm (M-10) and 366 nm (M-20). M-10 membrane showed the highest permeate flux of 120 L m-2 h-1 with a salt rejection of >98% for MgSO4 and NaCl. The fabricated membranes M-20 and M-30 showed 15% improvement in fouling resistance and maintained the initial permeate flux longer than the pristine membrane.

6.
Int J Dent ; 2021: 5560443, 2021.
Article in English | MEDLINE | ID: mdl-34093706

ABSTRACT

The antifungal effect of zirconium dioxide nanoparticles (ZrO2NPs) incorporated into denture base material has been inadequately investigated; additionally, to the authors' knowledge, no studies have assessed the influence of artificial aging on the antifungal activity of these particles. Methodology. Heat-polymerized acrylic resin disks were fabricated and divided into four groups (0%, 1%, 2.5%, and 5% ZrO2NPs by weight). Antifungal activity was assessed using the direct culture and disk diffusion methods. Surface roughness and contact angles were measured using a profilometer and a goniometer, respectively. The artificial aging procedure was performed by repeating all tests at 7, 14, and 30 days following 2 rounds of thermocycling. Data were analyzed using ANOVA and Tukey's post-hoc test (p < 0.05). Results. The addition of ZrO2NPs significantly decreased the adhesion of Candida albicans with and without artificial aging procedures (p < 0.001), while the disk diffusion methods did not reveal inhibition zones. ZrO2NP-modified specimens displayed significantly higher surface roughness compared to specimens in the control group (p < 0.05) and showed the same behaviors with artificial aging procedures. The contact angle was significantly decreased in all modified groups in comparison to the control group (p < 0.05). Conclusion. The addition of ZrO2NPs to polymethylmethacrylate denture base material reduced the adhesion of Candida albicans with a long-term antifungal effect. With the addition of ZrO2NPs, contact angles were decreased and surface roughness was increased; 1% was the most appropriate concentration. Clinical significance. The addition of ZrO2NPs to denture base material confers a long-term antifungal effect and could be used as a possible method for preventing and treating denture stomatitis.

7.
J Prosthodont ; 30(6): 500-508, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33020964

ABSTRACT

PURPOSE: To evaluate the effect of the addition of low concentration of silicon-dioxide nanoparticles (nano-SiO2 ) to poly(methylmethacrylate) (PMMA) denture base material on Candida albicans adhesion, surface roughness, contact angle, hardness, and translucency. MATERIALS AND METHODS: A total of 150 acrylic disks were fabricated from heat-polymerized acrylic resin and specimens were divided into 3 groups of 50 per test. They were further subdivided into 5 subgroups (n = 10) according to the concentration of nano-SiO2 : control (no addition) and four tested groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Slide count and direct culture methods were used to measure C. albicans count (CFU/mL). The surface roughness values (Ra ; µm) were determined using a profilometer. The contact angle (o ) measurement was performed by a goniometer using the sessile drop method. Vickers hardness was used to analyze surface hardness. Translucency was measured using a spectrophotometer. Data analysis was conducted through analysis of variance and Tukey's post hoc tests (α = 0.05). RESULTS: Compared to the control group, direct culture and slide count methods illustrated a significant decrease in C. albicans count (p ˂ 0.001) with the addition of nano-SiO2 , and this decrease was correlated with the concentration of nano-SiO2 . The addition of nano-SiO2 significantly decreased the contact angle (p ˂ 0.001), whereas hardness and surface roughness significantly increased (p ˂ 0.001). The addition of nano-SiO2 significantly decreased translucency (p ˂ 0.001), and this decrease was concentration dependent. CONCLUSION: Addition of low concentration of nano-SiO2 decreased C. albicans adhesion to PMMA denture base resin. Also, low additions of nano-SiO2 have positive effects on contact angle and hardness, whereas surface roughness and translucency were adversely affected at high concentrations.


Subject(s)
Nanoparticles , Polymethyl Methacrylate , Antifungal Agents , Candida albicans , Denture Bases , Materials Testing , Silicon Dioxide , Surface Properties
8.
Sci Total Environ ; 765: 142721, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33129530

ABSTRACT

Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.

9.
J Prosthodont ; 29(1): 80-86, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31650649

ABSTRACT

PURPOSE: To evaluate the effect of protective coatings on the surface roughness, contact angle, and Candida albicans (C. albicans) adhesion to polymethyl methacrylate (PMMA) denture base materials. MATERIAL AND METHODS: A total of 560 rectangular heat- and autopolymerized acrylic resin specimens were fabricated and divided into 5 groups (n = 14/group) according to coating agent. Uncoated specimens were used as control. Coating materials were: nano-coat, Optiglaze, nano-silica, or cyanoacrylate. Surface roughness (Ra ) was evaluated using a profilometer. Contact angle measurements were performed using the sessile drop method. C. albicans adhesion was evaluated using direct culture and slide count methods. ANOVA and Tukey's post hoc tests were used for data analysis (α = 0.05). RESULTS: Nano-coat and Optiglaze coating of heat-polymerized acrylic significantly decreased Ra (p < 0.001). No significant effect was seen with nano-silica coating while Ra significantly increased with cyanoacrylate (p < 0.001). For autopolymerized acrylic, nano-coat, Optiglaze, and nano-silica coatings significantly decreased Ra in comparison to control group (p < 0.001) while no significant difference was seen between control and cyanoacrylate coating (p = 0.45). In comparison to control group, nano-coat, Optiglaze, and nano-silica coating for both denture base materials significantly decreased contact angle, and C. albicans adhesion (p < 0.001) while cyanoacrylate significantly increased C. albicans adhesion (p = 0.002) with no effect on contact angle for heat- (p = 1.00) and autopolymerized resins (p = 0.83). CONCLUSION: Coating of removable prosthesis with nano-coat, Optiglaze, or nano-silica is an effective method to reduce C. albicans adhesion.


Subject(s)
Candida albicans , Denture Bases , Acrylic Resins , Materials Testing , Polymethyl Methacrylate , Surface Properties
10.
Sci Rep ; 6: 30253, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27445272

ABSTRACT

Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...