Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Devices (Auckl) ; 11: 77-85, 2018.
Article in English | MEDLINE | ID: mdl-29588620

ABSTRACT

There is no real need to discuss the potential advantages - mainly the excellent soft tissue contrast, nonionizing radiation, flow, and molecular information - of magnetic resonance imaging (MRI) as an intraoperative diagnosis and therapy system particularly for neurological applications and oncological therapies. Difficult patient access in conventional horizontal-field superconductive magnets, very high investment and operational expenses, and the need for special nonferromagnetic therapy tools have however prevented the widespread use of MRI as imaging and guidance tool for therapy purposes. The interventional use of MRI systems follows for the last 20+ years the strategy to use standard diagnostic systems and add more or less complicated and expensive components (eg, MRI-compatible robotic systems, specially shielded in-room monitors, dedicated tools and devices made from low-susceptibility materials, etc) to overcome the difficulties in the therapy process. We are proposing to rethink that approach using an in-room portable ultrasound (US) system that can be safely operated till 1 m away from the opening of a 3T imaging system. The live US images can be tracked using an optical inside-out approach adding a camera to the US probe in combination with optical reference markers to allow direct fusion with the MRI images inside the MRI suite. This leads to a comfortable US-guided intervention and excellent patient access directly on the MRI patient bed. This was combined with an entirely mechanical MRI-compatible 7 degrees of freedom holding arm concept, which shows that this test environment is a different way to create a cost-efficient and effective setup that combines the advantages of MRI and US by largely avoiding the drawbacks of current interventional MRI concepts.

SELECTION OF CITATIONS
SEARCH DETAIL
...