Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nutrients ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839354

ABSTRACT

The type 2 diabetes epidemic is real and hardly coming to an end in the upcoming years. The efforts of the scientific community to develop safer and more effective compounds for type 2 diabetes based on the structure of natural (poly)phenols are remarkable and have indeed proven worthwhile after the introduction of gliflozins in clinical practice. However, low-quality reports on the antidiabetic potential of plant-derived lipophilic (poly)phenols continue to pile up in the literature. Many of these compounds continue to be published as promising functional nutrients and antidiabetic pharmaceutical leads without consideration of their Pan-Assay Interference Compounds (PAINS) profile. This evidence-based opinion article conveys the authors' perspectives on the natural (poly)phenol artillery as a valuable and reliable source of bioactive compounds for diabetes. Ultimately, in light of the already established membrane-perturbing behavior of lipophilic (poly)phenols, together with the multiple benefits that may come with the introduction of a C-glucosyl moiety in bioactive compounds, we aim to raise awareness of the importance of contemplating the shift to (poly)phenol-carbohydrate combinations in the development of functional nutrients, as well as in the early stages of antidiabetic drug discovery.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Phenol , Phenols/chemistry , Hypoglycemic Agents/chemistry , Carbohydrates
2.
Sci Rep ; 11(1): 4443, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627687

ABSTRACT

The concept of Pan-Assay Interference Compounds (PAINS) is regarded as a threat to the recognition of the broad bioactivity of natural products. Based on the established relationship between altered membrane dipole potential and transmembrane protein conformation and function, we investigate here polyphenols' ability to induce changes in cell membrane dipole potential. Ultimately, we are interested in finding a tool to prevent polyphenol PAINS-type behavior and produce compounds less prone to untargeted and promiscuous interactions with the cell membrane. Di-8-ANEPPS fluorescence ratiometric measurements suggest that planar lipophilic polyphenols-phloretin, genistein and resveratrol-act by decreasing membrane dipole potential, especially in cholesterol-rich domains such as lipid rafts, which play a role in important cellular processes. These results provide a mechanism for their labelling as PAINS through their ability to disrupt cell membrane homeostasis. Aiming to explore the role of C-glucosylation in PAINS membrane-interfering behavior, we disclose herein the first synthesis of 4-glucosylresveratrol, starting from 5-hydroxymethylbenzene-1,3-diol, via C-glucosylation, oxidation and Horner-Wadsworth-Emmons olefination, and resynthesize phloretin and genistein C-glucosides. We show that C-glucosylation generates compounds which are no longer able to modify membrane dipole potential. Therefore, it can be devised as a strategy to generate bioactive natural product derivatives that no longer act as membrane dipole potential modifiers. Our results offer a new technology towards rescuing bioactive polyphenols from their PAINS danger label through C-C ligation of sugars.

3.
Med Res Rev ; 38(1): 261-324, 2018 01.
Article in English | MEDLINE | ID: mdl-28422298

ABSTRACT

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.


Subject(s)
Alzheimer Disease/therapy , Diabetes Mellitus, Type 2/therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/prevention & control , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Humans , Molecular Targeted Therapy
4.
Phytomedicine ; 23(5): 550-7, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27064014

ABSTRACT

BACKGROUND: Brown macroalgae have attracted attention because they display a wide range of biological activities, including antitumoral properties. Inthis study we isolated isololiolide from Cystoseira tamariscifolia for the first time. PURPOSE: To examine the therapeutical potential of isololiolide against tumor cell lines. METHODS/STUDY DESIGN: The structure of the compound was established and confirmed by 1D and 2D NMR as well as HRMS spectral analysis. The in vitro cytotoxicity was analyzed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in tumoral as well as in non-tumoral cell lines. Cell cycle arrest and induction of apoptosis were assessed by flow cytometry. Alteration of expression levels in proteins important in the apoptotic cascade was analyzed by western blotting. RESULTS: Isololiolidewas isolated for the first time from the brown macroalga C.tamariscifolia. Isololiolide exhibited significant cytotoxic activity against three human tumoral cell lines, namely hepatocarcinoma HepG2 cells, whereas no cytotoxicity was found in non-malignant MRC-5 and HFF-1 human fibroblasts. Isololiolide completely disrupted the HepG2 normal cell cycle and induced significant apoptosis. Moreover, western blot analysis showed that isololiolide altered the expression of proteins that are important in the apoptotic cascade, increasing PARP cleavage and p53 expression while decreasing procaspase-3 and Bcl-2 levels. CONCLUSION: Isololiolide isolated from C. tamariscifolia is able to exert a selective cytotoxic activity on hepatocarcinoma HepG2 cells as well as induce apoptosis through the modulation of apoptosis-related proteins.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Carotenoids/pharmacology , Liver Neoplasms/pathology , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Hep G2 Cells/drug effects , Humans , Molecular Structure , Phaeophyceae/chemistry , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/metabolism
5.
ChemMedChem ; 8(11): 1751-65, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23956078

ABSTRACT

Malignant metastatic melanoma is one of the oncologic diseases with the worst clinical prognosis, due primarily to resistance phenomena against chemotherapeutic agents in current use. However, over the last few years, characterization of the molecular mechanisms involved in the development and progression of the disease has contributed to elucidation of the main pathways by which tissue invasion and metastasis can occur. More importantly, the identification of abnormalities in signaling cascades in melanoma cells has facilitated new therapeutic approaches against malignant melanoma through the design of highly potent and selective drugs with low associated toxicity. Ultimately, recognition of the restricted applicability of new chemotherapies in certain genetic contexts has led to significant improvements in the results of clinical trials, anticipating the existing need for investment in personalized therapies, and taking into account the molecular alterations observed in tumors. Although significant advances have been made in terms of extending the median overall survival rate and improving the quality of life for patients, the mechanisms that compromise in vivo drug efficacy remain poorly understood, particularly those concerning therapeutic resistance phenomena. This review summarizes recently validated targets from the perspective of the medicinal chemistry carried out in the design of the most promising structures.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Melanoma/drug therapy , Chemistry, Pharmaceutical/trends , Drug Delivery Systems/trends , Humans , Melanoma/physiopathology , Molecular Structure , Neoplasms, Second Primary , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...