Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol Rep ; 3: 100069, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36419607

ABSTRACT

Crustins represent the largest and most diverse family of antimicrobial peptides (AMPs) found in crustaceans. They are classically defined as disulfide-rich peptides/polypeptides holding a typical Whey Acidic Protein (WAP) domain at the C-terminal end. This WAP domain has eight cysteine residues forming a tightly packed structure, the four-disulfide core (4DSC) motif, that is also found in other proteins displaying protease inhibitory properties. Crustins are highly diverse in terms of primary structure, size and biochemical features, thus exhibiting a series of biological functions beyond their antimicrobial properties. In order to better categorize the distinct crustin members, different classification systems have been proposed. In this review, we discuss the current classification systems and explore the biological implication of the impressive molecular diversity of this unique AMP family. We also summarize the recent findings on the role of these effectors in crustacean immunity and homeostasis as well as in host-microbe interactions.

2.
J Diabetes Res ; 2022: 3975147, 2022.
Article in English | MEDLINE | ID: mdl-35967128

ABSTRACT

Expression of the transient receptor potential (TRP) channel genes and their isoforms in the alpha-cells and the beta-cells of the human islets of Langerhans has not been studied in detail. In this study, we have analyzed the RNA sequencing data obtained from purified human alpha-cells and beta-cells to identify the genes and their isoforms that are expressed differentially in these two cell types. We found that TRPC1, TRPC4, TRPC7, TRPM3, and TRPML1 were differentially expressed in these two cell types. TRPC1, TRPM3, and TRPML1 were expressed at a higher level in the beta-cells than in the alpha-cells. TRPC4 and TRPC7 were expressed at a higher level in the alpha-cells than in the beta-cells. The TRPC4-206 isoform was expressed at a 45-fold higher level in the alpha-cells compared to the beta-cells. Expression of TRPM3-202 was 200-fold and TRPM3-209 was 25-fold higher in the beta-cells than in the alpha-cells. Our study has demonstrated the relative abundance of expression of the TRP channel genes and their isoforms in the human alpha-cells and the beta-cells.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Transient Receptor Potential Channels , Glucagon-Secreting Cells/metabolism , Humans , Insulin-Secreting Cells/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
3.
Dev Comp Immunol ; 79: 44-50, 2018 02.
Article in English | MEDLINE | ID: mdl-29042192

ABSTRACT

Much of our current knowledge on shrimp immune system is restricted to the defense reactions mediated by the hemocytes and little is known about gut immunity. Here, we have investigated the transcriptional profile of immune-related genes in different organs of the digestive system of the shrimp Litopenaeus vannamei. First, the tissue distribution of 52 well-known immune-related genes has been assessed by semiquantitative analysis in the gastrointestinal tract (foregut, midgut and hindgut) and in the hepatopancreas and circulating hemocytes of shrimp stimulated or not with heat-killed bacteria. Then, the expression levels of 18 genes from key immune functional categories were quantified by fluorescence-based quantitative PCR in the midgut of animals experimentally infected with the Gram-negative Vibrio harveyi or the White spot syndrome virus (WSSV). Whereas the expression of some genes was induced at 48 h after the bacterial infection, any of the analyzed genes showed to be modulated in response to the virus. Whole-mount immunofluorescence assays confirmed the presence of infiltrating hemocytes in the intestines, indicating that the expression of some immune-related genes in gut is probably due to the migratory behavior of these circulating cells. This evidence suggests the participation of hemocytes in the delivery of antimicrobial molecules into different portions of the digestive system. Taken all together, our results revealed that gut is an important immune organ in L. vannamei with intimate association with hemocytes.


Subject(s)
Artemia/immunology , DNA Virus Infections/immunology , Hemocytes/immunology , Intestinal Mucosa/immunology , Vibrio Infections/immunology , Vibrio/immunology , White spot syndrome virus 1/immunology , Animals , Anti-Infective Agents/metabolism , Cell Movement , Hot Temperature , Immunity , Immunity, Innate , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...