Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 532(2): e25545, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37849047

ABSTRACT

In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.


Subject(s)
Corticomedial Nuclear Complex , Vomeronasal Organ , Animals , Female , Male , Olfactory Bulb/physiology , Vomeronasal Organ/physiology , Sex Characteristics , GABAergic Neurons
2.
Sleep ; 46(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37224457

ABSTRACT

A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.


Subject(s)
Fatigue , Motivation , Humans , Biology
3.
Front Behav Neurosci ; 15: 706079, 2021.
Article in English | MEDLINE | ID: mdl-34421555

ABSTRACT

In humans, mutations in the transcription factor encoding gene, FOXP2, are associated with language and Autism Spectrum Disorders (ASD), the latter characterized by deficits in social interactions. However, little is known regarding the function of Foxp2 in male or female social behavior. Our previous studies in mice revealed high expression of Foxp2 within the medial subnucleus of the amygdala (MeA), a limbic brain region highly implicated in innate social behaviors such as mating, aggression, and parental care. Here, using a comprehensive panel of behavioral tests in male and female Foxp2 +/- heterozygous mice, we investigated the role Foxp2 plays in MeA-linked innate social behaviors. We reveal significant deficits in olfactory processing, social interaction, mating, aggressive, and parental behaviors. Interestingly, some of these deficits are displayed in a sex-specific manner. To examine the consequences of Foxp2 loss of function specifically in the MeA, we conducted a proteomic analysis of microdissected MeA tissue. This analyses revealed putative sex differences expression of a host of proteins implicated in neuronal communication, connectivity, and dopamine signaling. Consistent with this, we discovered that MeA Foxp2-lineage cells were responsive to dopamine with differences between males and females. Thus, our findings reveal a central and sex-specific role for Foxp2 in social behavior and MeA function.

4.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32493755

ABSTRACT

The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.


Subject(s)
Corticomedial Nuclear Complex , Sex Characteristics , Action Potentials , Amygdala , Female , Humans , Male , Neurons
5.
Mol Cell Neurosci ; 96: 25-34, 2019 04.
Article in English | MEDLINE | ID: mdl-30858140

ABSTRACT

Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.


Subject(s)
Hippocampus/metabolism , Neuronal Outgrowth , Neurons/metabolism , Synapsins/genetics , Synaptic Potentials , Animals , Cells, Cultured , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/physiology , Mice , Neurons/cytology , Neurons/physiology , Synapsins/deficiency
6.
J Neurosci ; 37(7): 1757-1771, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087765

ABSTRACT

Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.


Subject(s)
Hippocampus/cytology , Interneurons/physiology , Synapsins/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Calcium Channel Blockers/pharmacology , Electric Stimulation , Female , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parvalbumins/genetics , Parvalbumins/metabolism , Synapses , Synapsins/genetics , Synaptic Transmission/drug effects , omega-Agatoxin IVA/pharmacology , omega-Conotoxin GVIA/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...