Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 353(2): e1900241, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31840866

ABSTRACT

Nineteen 3,5-disubstituted-isoxazole analogs were synthesized based on nitrofuran scaffolds, by a [3 + 2] cycloaddition reaction between terminal acetylenes and 5-nitrofuran chloro-oxime. The compounds were obtained in moderate to very good yields (45-91%). The antileishmanial activity was assayed against the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Alkylchlorinated compounds 14p-r were active on both the promastigote and amastigote forms, with emphasis on compound 14p, which showed strong activity against the amastigote form (IC50 = 0.6 µM and selectivity index [SI] = 5.2). In the alkyl series, compound 14o stands out with an IC50 = 8.5 µM and SI = 8.0 on the amastigote form. In the aromatic series, the most active compounds were those containing electron-donor groups, such as trimethoxy isoxazole 14g (IC50 = 1.2 µM and SI = 20.2); compound 14h, with IC50 = 7.0 µM and SI = 6.1; and compound 14j containing the 4-SCH3 group, with IC50 = 5.7 µM and SI = 10.2. In addition, the antifungal activity of 19 nitrofuran isoxazoles was evaluated against five strains of Candida (C. albicans, C. parapsilosis, C. krusei, C. tropicalis, and C. glabrata). Eleven isoxazole derivatives were active against C. parapsilosis, and compound 14o was found to be the most active (minimal inhibitory concentration [MIC] = 3.4 µM) for this strain. Compound 14p was active against all the strains tested, with an MIC = 17.5 µM for C. glabrata, lower than that of the fluconazole used as the reference drug.


Subject(s)
Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Candida/drug effects , Drug Design , Isoxazoles/pharmacology , Leishmania/drug effects , Nitrofurans/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Nitrofurans/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
2.
Chem Biol Drug Des ; 93(3): 313-324, 2019 03.
Article in English | MEDLINE | ID: mdl-30354012

ABSTRACT

Using bioisosterism as a medicinal chemistry tool, 16 3,5-diaryl-isoxazole analogues of the tetrahydrofuran neolignans veraguensin, grandisin and machilin G were synthesized via 1,3-dipolar cycloaddition reactions, with yields from 43% to 90%. Antitrypanosomatid activities were evaluated against Trypanosoma cruzi, Leishmania (L.) amazonensis and Leishmania (V.) braziliensis. All compounds were selective for the Leishmania genus and inactive against T. cruzi. Isoxazole analogues showed a standard activity on both promastigotes of L. amazonensis and L. braziliensis. The most active compounds were 15, 16 and 19 with IC50 values of 2.0, 3.3 and 9.5 µM against L. amazonensis and IC50 values of 1.2, 2.1 and 6.4 µM on L. braziliensis, respectively. All compounds were noncytotoxic, showing lower cytotoxicity (>250 µM) than pentamidine (78.9 µM). Regarding the structure-activity relationship (SAR), the methylenedioxy group was essential to antileishmanial activity against promastigotes. Replacement of the tetrahydrofuran nucleus by an isoxazole core improved the antileishmanial activity.


Subject(s)
Antiprotozoal Agents/chemistry , Drug Design , Furans/chemistry , Isoxazoles/chemistry , Lignans/chemistry , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Cell Survival/drug effects , Inhibitory Concentration 50 , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Leishmania/drug effects , Mice , NIH 3T3 Cells , Structure-Activity Relationship , Trypanosoma cruzi/drug effects
3.
Molecules ; 21(6)2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27331807

ABSTRACT

Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.


Subject(s)
Furans/chemistry , Leishmaniasis/drug therapy , Lignans/chemistry , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Furans/administration & dosage , Humans , Leishmania/drug effects , Leishmania/pathogenicity , Leishmaniasis/parasitology , Lignans/administration & dosage , Macrophages/drug effects , Nitric Oxide/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...