Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Biometals ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538957

ABSTRACT

Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.

2.
Biochimie ; 216: 56-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37806617

ABSTRACT

Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.


Subject(s)
Campylobacter jejuni , Polyribonucleotide Nucleotidyltransferase , Humans , Virulence , Polyribonucleotide Nucleotidyltransferase/genetics , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/metabolism , Scattering, Small Angle , X-Ray Diffraction , Endoribonucleases , RNA , Exoribonucleases/metabolism , Ribonuclease, Pancreatic
3.
FEBS Open Bio ; 13(6): 957-974, 2023 06.
Article in English | MEDLINE | ID: mdl-35247037

ABSTRACT

RNAs are extremely important molecules inside the cell, which perform many different functions. For example, messenger RNAs, transfer RNAs and ribosomal RNAs are involved in protein synthesis, whereas noncoding RNAs have numerous regulatory roles. Ribonucleases (RNases) are the enzymes responsible for the processing and degradation of all types of RNAs, having multiple roles in every aspect of RNA metabolism. However, the involvement of RNases in disease is still not well understood. This review focuses on the involvement of the RNase II/RNB family of 3'-5' exoribonucleases in human disease. This can be attributed to direct effects, whereby mutations in the eukaryotic enzymes of this family [defective in sister chromatid joining (Dis3; or Rrp44), Dis3-like exonuclease 1 (Dis3L1; or Dis3L) and Dis3-like exonuclease 2 (Dis3L2)] are associated with a disease, or indirect effects, whereby mutations in the prokaryotic counterparts of RNase II/RNB family (RNase II and/or RNase R) affect the physiology and virulence of several human pathogens. In this review, we compare the structural and biochemical characteristics of the members of the RNase II/RNB family of enzymes. The outcomes of mutations impacting enzymatic function are revisited, in terms of both the direct and indirect effects on disease. Furthermore, we also describe the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral exoribonuclease and its importance to combat the COVID-19 pandemic. As a result, RNases may be a good therapeutic target to reduce bacterial and viral pathogenicity. These are the two perspectives on RNase II/RNB family enzymes that are presented in this review.


Subject(s)
COVID-19 , Exoribonucleases , Humans , Exoribonucleases/metabolism , Pandemics , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA/metabolism , Ribonucleases
4.
Microorganisms ; 10(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422373

ABSTRACT

A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.

5.
Microorganisms ; 10(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35208797

ABSTRACT

The pandemic caused by SARS-CoV-2 is not over yet, despite all the efforts from the scientific community. Vaccination is a crucial weapon to fight this virus; however, we still urge the development of antivirals to reduce the severity and progression of the COVID-19 disease. For that, a deep understanding of the mechanisms involved in viral replication is necessary. nsp15 is an endoribonuclease critical for the degradation of viral polyuridine sequences that activate host immune sensors. This enzyme is known as one of the major interferon antagonists from SARS-CoV-2. In this work, a biochemical characterization of SARS-CoV-2 nsp15 was performed. We saw that nsp15 is active as a hexamer, and zinc can block its activity. The role of conserved residues from SARS-CoV-2 nsp15 was investigated, and N164 was found to be important for protein hexamerization and to contribute to the specificity to degrade uridines. Several chemical groups that impact the activity of this ribonuclease were also identified. Additionally, FDA-approved drugs with the capacity to inhibit the in vitro activity of nsp15 are reported in this work. This study is of utmost importance by adding highly valuable information that can be used for the development and rational design of therapeutic strategies.

6.
Nucleic Acids Res ; 49(9): 5249-5264, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33893809

ABSTRACT

Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.


Subject(s)
DEAD-box RNA Helicases/metabolism , Exoribonucleases/metabolism , Helicobacter pylori/enzymology , Amino Acid Motifs , Epsilonproteobacteria/enzymology , Exoribonucleases/chemistry , RNA, Double-Stranded/metabolism , RNA, Ribosomal, 5S/metabolism
7.
FEBS J ; 288(17): 5130-5147, 2021 09.
Article in English | MEDLINE | ID: mdl-33705595

ABSTRACT

SARS-CoV-2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS-CoV-2. Nsp14 is a multifunctional protein with two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14-nsp10 complex from SARS-CoV-2. We confirm the 3'-5' exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS-CoV-2 nsp14-nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14-mediated ExoN activity of SARS-CoV-2. We studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS-CoV-2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.


Subject(s)
COVID-19/genetics , Exoribonucleases/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/virology , Drug Design , Exoribonucleases/antagonists & inhibitors , Humans , Multiprotein Complexes/drug effects , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/genetics , COVID-19 Drug Treatment
8.
PLoS Genet ; 16(12): e1009297, 2020 12.
Article in English | MEDLINE | ID: mdl-33370287

ABSTRACT

Dis3L2 is a highly conserved 3'-5' exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms' tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth. IDGFs are conserved proteins homologous to human chitinase-like proteins such as CHI3L1/YKL-40 which are implicated in tissue regeneration as well as cancers including colon cancer and non-small cell lung cancer. We also demonstrate that loss of DIS3L2 in human kidney HEK-293T cells results in cell proliferation, illustrating the conservation of this important cell proliferation pathway. Using these human cells, we show that loss of DIS3L2 results in an increase in the PI3-Kinase/AKT signalling pathway, which we subsequently show to contribute towards the proliferation phenotype in Drosophila. Our work therefore provides the first mechanistic explanation for DIS3L2-induced overgrowth in humans and flies and identifies an ancient proliferation pathway controlled by Dis3L2 to regulate cell proliferation and tissue growth.


Subject(s)
Cell Proliferation , Imaginal Discs/metabolism , Animals , Chitinase-3-Like Protein 1/chemistry , Chitinase-3-Like Protein 1/metabolism , Conserved Sequence , Drosophila Proteins/metabolism , Drosophila melanogaster , Glycoproteins/metabolism , HEK293 Cells , Humans , Imaginal Discs/growth & development , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
9.
Methods Mol Biol ; 2062: 37-46, 2020.
Article in English | MEDLINE | ID: mdl-31768970

ABSTRACT

There are striking similarities between the processes of RNA degradation in bacteria and eukaryotes, which rely on the same basic set of enzymatic activities. In particular, enzymes that catalyze 3'→5' RNA decay share evolutionary relationships across the three domains of life. Over the years, a large body of biochemical and structural data has been generated that elucidated the mechanism of action of these enzymes. In this overview, to trace the evolutionary origins of the multisubunit RNA exosome complex, we compare the structural and functional characteristics of the eukaryotic and prokaryotic exoribonucleolytic activities.


Subject(s)
Bacteria/genetics , Eukaryota/genetics , Exosomes/genetics , Biological Evolution , Eukaryotic Cells/physiology , Exosome Multienzyme Ribonuclease Complex/genetics , Humans , Prokaryotic Cells/physiology , RNA/genetics
10.
Methods Mol Biol ; 2062: 47-61, 2020.
Article in English | MEDLINE | ID: mdl-31768971

ABSTRACT

The same basic set of enzymatic activities exhibited by the eukaryotic RNA exosome are also found in prokaryotes. Bacteria have two predominant and distinct 3'→5' exoribonuclease activities: one is characterized by processive hydrolysis, derived from RNase II and RNase R, and the other by processive phosphorolysis, derived from PNPase. In this chapter we describe methods for (1) the overexpression and purification of these three proteins; and (2) their in vitro biochemical and enzymatic characterization-including RNA binding. The labeling and preparation of a set of specific RNA substrates is also described.


Subject(s)
Exosomes/metabolism , Prokaryotic Cells/metabolism , Animals , Eukaryotic Cells/metabolism , Exoribonucleases/metabolism , Humans , RNA/metabolism , RNA-Binding Proteins/metabolism
11.
Front Genet ; 9: 350, 2018.
Article in English | MEDLINE | ID: mdl-30210532

ABSTRACT

Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α-proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.

12.
Biochem J ; 475(12): 2091-2105, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29802118

ABSTRACT

DIS3 (defective in sister chromatid joining) is the catalytic subunit of the exosome, a protein complex involved in the 3'-5' degradation of RNAs. DIS3 is a highly conserved exoribonuclease, also known as Rrp44. Global sequencing studies have identified DIS3 as being mutated in a range of cancers, with a considerable incidence in multiple myeloma. In this work, we have identified two protein-coding isoforms of DIS3. Both isoforms are functionally relevant and result from alternative splicing. They differ from each other in the size of their N-terminal PIN (PilT N-terminal) domain, which has been shown to have endoribonuclease activity and tether DIS3 to the exosome. Isoform 1 encodes a full-length PIN domain, whereas the PIN domain of isoform 2 is shorter and is missing a segment with conserved amino acids. We have carried out biochemical activity assays on both isoforms of full-length DIS3 and the isolated PIN domains. We find that isoform 2, despite missing part of the PIN domain, has greater endonuclease activity compared with isoform 1. Examination of the available structural information allows us to provide a hypothesis to explain this altered behaviour. Our results also show that multiple myeloma patient cells and all cancer cell lines tested have higher levels of isoform 1 compared with isoform 2, whereas acute myeloid leukaemia and chronic myelomonocytic leukaemia patient cells and samples from healthy donors have similar levels of isoforms 1 and 2. Taken together, our data indicate that significant changes in the ratios of the two isoforms could be symptomatic of haematological cancers.


Subject(s)
Alternative Splicing , Exosome Multienzyme Ribonuclease Complex/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/enzymology , Neoplasm Proteins/biosynthesis , Exosome Multienzyme Ribonuclease Complex/genetics , HEK293 Cells , HeLa Cells , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Neoplasm Proteins/genetics , THP-1 Cells
13.
Biochimie ; 147: 70-79, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29339148

ABSTRACT

Bacteria need to promptly respond to environmental changes. Ribonucleases (RNases) are key factors in the adaptation to new environments by enabling a rapid adjustment in RNA levels. The exoribonuclease polynucleotide phosphorylase (PNPase) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization in C. jejuni. However, the mechanism of action of this ribonuclease is not yet known. In this work we have characterized the biochemical activity of C. jejuni PNPase. Our results demonstrate that Cj-PNP is a processive 3' to 5' exoribonuclease that degrades single-stranded RNAs. Its activity is regulated according to the temperature and divalent ions. We have also shown that the KH and S1 domains are important for trimerization, RNA binding, and, consequently, for the activity of Cj-PNP. These findings will be helpful to develop new strategies for fighting against C. jejuni and may be extrapolated to other foodborne pathogens.


Subject(s)
Campylobacter jejuni/enzymology , Campylobacter jejuni/pathogenicity , Exoribonucleases/metabolism , Campylobacter jejuni/physiology , Cations, Divalent/pharmacology , Exoribonucleases/chemistry , Microbial Viability , Models, Molecular , Protein Structure, Quaternary , RNA, Bacterial/metabolism , Temperature , Virulence
14.
Front Microbiol ; 8: 910, 2017.
Article in English | MEDLINE | ID: mdl-28579982

ABSTRACT

Contaminated food is the source of many severe infections in humans. Recent advances in food science have discovered new foodborne pathogens and progressed in characterizing their biology, life cycle, and infection processes. All this knowledge has been contributing to prevent food contamination, and to develop new therapeutics to treat the infections caused by these pathogens. RNA metabolism is a crucial biological process and has an enormous potential to offer new strategies to fight foodborne pathogens. In this review, we will summarize what is known about the role of bacterial ribonucleases and sRNAs in the virulence of several foodborne pathogens and how can we use that knowledge to prevent infection.

15.
Nucleic Acids Res ; 45(3): 1371-1391, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28180335

ABSTRACT

Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg2+, Mn2+ and Ca2+, which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca2+ specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.


Subject(s)
Bacterial Proteins/metabolism , Endoribonucleases/metabolism , Sinorhizobium meliloti/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Catalysis , Chromosomes, Bacterial/genetics , Endoribonucleases/chemistry , Endoribonucleases/genetics , Gene Deletion , Gene Expression Profiling , Gene Silencing , Genes, Bacterial , Genes, Reporter , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , Metalloproteins/chemistry , Metalloproteins/genetics , Metalloproteins/metabolism , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , Plasmids/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sinorhizobium meliloti/genetics , Substrate Specificity , Symbiosis/genetics
16.
Cell Microbiol ; 19(4)2017 04.
Article in English | MEDLINE | ID: mdl-27684048

ABSTRACT

Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence.


Subject(s)
Adhesins, Bacterial/chemistry , Burkholderia Infections/microbiology , Burkholderia cenocepacia/physiology , Pneumonia/microbiology , Receptors, Tumor Necrosis Factor, Type I/chemistry , Adhesins, Bacterial/metabolism , Bacterial Adhesion , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Host-Pathogen Interactions , Humans , Protein Binding , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction
17.
FEBS J ; 282(18): 3489-99, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26183531

ABSTRACT

RNA molecules are subjected to post-transcriptional modifications that might determine their maturation, activity, localization and stability. These alterations can occur within the RNA molecule or at its 5'- or 3'- extremities, and are essential for gene regulation and proper function of the RNA. One major type of modification is the 3'-end addition of nontemplated nucleotides. Polyadenylation is the most well studied type of 3'-RNA modification, both in eukaryotes and prokaryotes. The importance of 3'-oligouridylation has recently gained attention through the discovery of several types of uridylated-RNAs, by the existence of enzymes that specifically add poly(U) tails and others that preferentially degrade these tails. Namely, Dis3L2 is a 3'-5' exoribonuclease from the RNase II/RNB family that has been shown to act preferentially on oligo(U)-tailed transcripts. Our understanding of this process is still at the beginning, but it is already known to interfere in the regulation of diverse RNA species in most eukaryotes. Now that we are aware of the prevalence of RNA uridylation and the techniques available to globally evaluate the 3'-terminome, we can expect to make rapid progress in determining the extent of terminal oligouridylation in different RNA populations and unravel its impact on RNA decay mechanisms. Here, we sum up what is known about 3'-RNA modification in the different cellular compartments of eukaryotic cells, the conserved enzymes that perform this 3'-end modification and the effectors that are selectively activated by this process.


Subject(s)
RNA 3' End Processing , RNA/chemistry , RNA/metabolism , Animals , Cell Compartmentation , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Humans , Metabolic Networks and Pathways , Models, Biological , Models, Molecular , Oligoribonucleotides/chemistry , Oligoribonucleotides/metabolism , Poly U/chemistry , Poly U/metabolism , Protein Conformation , RNA Stability , Uracil Nucleotides/chemistry , Uracil Nucleotides/metabolism
18.
J Biol Chem ; 289(40): 27814-24, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25100732

ABSTRACT

Bacterial pathogens must adapt/respond rapidly to changing environmental conditions. Ribonucleases (RNases) can be crucial factors contributing to the fast adaptation of RNA levels to different environmental demands. It has been demonstrated that the exoribonuclease polynucleotide phosphorylase (PNPase) facilitates survival of Campylobacter jejuni in low temperatures and favors swimming, chick colonization, and cell adhesion/invasion. However, little is known about the mechanism of action of other ribonucleases in this microorganism. Members of the RNB family of enzymes have been shown to be involved in virulence of several pathogens. We have searched C. jejuni genome for homologues and found one candidate that displayed properties more similar to RNase R (Cj-RNR). We show here that Cj-RNR is important for the first steps of infection, the adhesion and invasion of C. jejuni to eukaryotic cells. Moreover, Cj-RNR proved to be active in a wide range of conditions. The results obtained lead us to conclude that Cj-RNR has an important role in the biology of this foodborne pathogen.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter Infections/microbiology , Campylobacter jejuni/enzymology , Campylobacter jejuni/pathogenicity , Exoribonucleases/metabolism , Bacterial Adhesion , Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Exoribonucleases/genetics , Gene Expression Regulation, Bacterial , Humans , Virulence
20.
PLoS One ; 8(12): e83328, 2013.
Article in English | MEDLINE | ID: mdl-24358276

ABSTRACT

In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.


Subject(s)
Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/metabolism , DNA/metabolism , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Pancreatitis-Associated Proteins , Protein Binding , Protein Interaction Domains and Motifs/genetics , Response Elements , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Sequence Homology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...