Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 87(6): 1513-1520, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38781491

ABSTRACT

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.


Subject(s)
Antiviral Agents , Metabolomics , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Humans , Cyanobacteria/chemistry , Structure-Activity Relationship , Fatty Acids/chemistry , Fatty Acids/pharmacology , COVID-19 , Molecular Structure , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism
2.
Nat Commun ; 13(1): 4619, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941113

ABSTRACT

The identity and biological activity of most metabolites still remain unknown. A bottleneck in the exploration of metabolite structures and pharmaceutical activities is the compound purification needed for bioactivity assignments and downstream structure elucidation. To enable bioactivity-focused compound identification from complex mixtures, we develop a scalable native metabolomics approach that integrates non-targeted liquid chromatography tandem mass spectrometry and detection of protein binding via native mass spectrometry. A native metabolomics screen for protease inhibitors from an environmental cyanobacteria community reveals 30 chymotrypsin-binding cyclodepsipeptides. Guided by the native metabolomics results, we select and purify five of these compounds for full structure elucidation via tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy as well as evaluation of their biological activities. These results identify rivulariapeptolides as a family of serine protease inhibitors with nanomolar potency, highlighting native metabolomics as a promising approach for drug discovery, chemical ecology, and chemical biology studies.


Subject(s)
Metabolomics , Protease Inhibitors , Chromatography, Liquid/methods , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Protease Inhibitors/pharmacology , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...