Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 382: 110620, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37406982

ABSTRACT

The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of ß-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 µM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.


Subject(s)
Alzheimer Disease , Neuroblastoma , Trace Elements , Humans , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Ligands , HEK293 Cells , Molecular Docking Simulation , Aspartic Acid Endopeptidases/metabolism , Aminoquinolines/pharmacology , Structure-Activity Relationship
2.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297327

ABSTRACT

A series of 46 Cinchona alkaloid derivatives that differ in positions of fluorine atom(s) in the molecule were synthesized and tested as human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. All tested compounds reversibly inhibited AChE and BChE in the nanomolar to micromolar range; for AChE, the determined enzyme-inhibitor dissociation constants (Ki) ranged from 3.9-80 µM, and 0.075-19 µM for BChE. The most potent AChE inhibitor was N-(para-fluorobenzyl)cinchoninium bromide, while N-(meta-fluorobenzyl)cinchonidinium bromide was the most potent BChE inhibitor with Ki constant in the nanomolar range. Generally, compounds were non-selective or BChE selective cholinesterase inhibitors, where N-(meta-fluorobenzyl)cinchonidinium bromide was the most selective showing 533 times higher preference for BChE. In silico study revealed that twenty-six compounds should be able to cross the blood-brain barrier by passive transport. An extensive machine learning procedure was utilized for the creation of multivariate linear regression models of AChE and BChE inhibition. The best possible models with predicted R2 (CD-derivatives) of 0.9932 and R2(CN-derivatives) of 0.9879 were calculated and cross-validated. From these data, a smart guided search for new potential leads can be performed. These results pointed out that quaternary Cinchona alkaloids are the promising structural base for further development as selective BChE inhibitors which can be used in the central nervous system.

3.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36297332

ABSTRACT

As butyrylcholinesterase (BChE) plays a role in the progression of symptoms and pathophysiology of Alzheimer's disease (AD), selective inhibition of BChE over acetylcholinesterase (AChE) can represent a promising pathway in treating AD. The carbamate group was chosen as a pharmacophore because the carbamates currently or previously in use for the treatment of AD displayed significant positive effects on cognitive symptoms. Eighteen biscarbamates with different substituents at the carbamoyl and hydroxyaminoethyl chain were synthesized, and their inhibitory potential toward both cholinesterases and inhibition selectivity were determined. The ability of carbamates to cross the blood-brain barrier (BBB) by passive transport, their cytotoxic profile and their ability to chelate biometals were also evaluated. All biscarbamates displayed a time-dependent inhibition with inhibition rate constants within 10-3-10-6 M-1 min-1 range for both cholinesterases, with generally higher preference to BChE. For two biscarbamates, it was determined that they should be able to pass the BBB by passive transport, while for five biscarbamates, this ability was slightly limited. Fourteen biscarbamates did not exhibit a cytotoxic effect toward liver, kidney and neuronal cells. In conclusion, considering their high BChE selectivity, non-toxicity, ability to chelate biometals and pass the BBB, compounds 2 and 16 were pointed out as the most promising compounds for the treatment of middle and late stages of AD.

4.
Pharmaceutics ; 14(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745878

ABSTRACT

Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.

5.
Pharmaceutics ; 13(3)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804719

ABSTRACT

The treatment of central nervous system (CNS) diseases related to the decrease of neurotransmitter acetylcholine in neurons is based on compounds that prevent or disrupt the action of acetylcholinesterase and butyrylcholinesterase. A series of thirteen quinuclidine carbamates were designed using quinuclidine as the structural base and a carbamate group to ensure the covalent binding to the cholinesterase, which were synthesized and tested as potential human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The synthesized compounds differed in the substituents on the amino and carbamoyl parts of the molecule. All of the prepared carbamates displayed a time-dependent inhibition with overall inhibition rate constants in the 103 M-1 min-1 range. None of the compounds showed pronounced selectivity for any of the cholinesterases. The in silico determined ability of compounds to cross the blood-brain barrier (BBB) revealed that six compounds should be able to pass the BBB by passive transport. In addition, the compounds did not show toxicity toward cells that represented the main models of individual organs. By machine learning, the most optimal regression models for the prediction of bioactivity were established and validated. Models for AChE and BChE described 89 and 90% of the total variations among the data, respectively. These models facilitated the prediction and design of new and more potent inhibitors. Altogether, our study confirmed that quinuclidinium carbamates are promising candidates for further development as CNS-active drugs, particularly for Alzheimer's disease treatment.

6.
Arh Hig Rada Toksikol ; 71(4): 285-299, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33410773

ABSTRACT

Due to their very good chemical and proteolytic stability, ability to penetrate cell membranes, and resemblance to a peptide bond, carbamate derivatives have received much attention in recent years and got an important role in modern drug discovery and medicinal chemistry. Today, carbamates make structural and/or functional part of many drugs and prodrugs approved and marketed for the treatment of various diseases such as cancer, epilepsy, hepatitis C, HIV infection, and Alzheimer's disease. In drugs they can play a role in drug-target interaction or improve the biological activity of parent molecules. In prodrugs they are mainly used to delay first-pass metabolism and enhance the bioavailability and effectiveness of compounds. This brief review takes a look at the properties and use of carbamates in various fields of medicine and provides quick insights into the mechanisms of action for some of them.


Subject(s)
Carbamates , Prodrugs , Biological Availability , Carbamates/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...