Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Sci Rep ; 13(1): 3660, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871058

ABSTRACT

Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.


Subject(s)
Arsenic , Arsenicals , Arsenites , Drinking Water , Humans , Female , Male , Animals , Mice , Methyltransferases
2.
Environ Sci Process Impacts ; 25(4): 850-869, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36924114

ABSTRACT

Arsenic speciation was followed monthly along the spring productivity period (January-June 2021) in the Petit Lac (76 m deep) and in April and June 2021 in the Grand Lac (309.7 m deep) of Lake Geneva (Switzerland/France). Lake Geneva is presently an oligo-mesotrophic lake, and As-unpolluted. The water column never becomes anoxic but the oxygen saturation at the bottom of the Grand Lac is now below 30% owing to lack of water column mixing since 2012. Thus, this lake offers excellent conditions to study As behaviour in an unpolluted, oxic freshwater body. The following 'dissolved' As species: iAs(III), iAs(III + V), MA(III), MA(III + V), DMA(III + V), and TMAO were analysed by HG-CT-ICP-MS/MS. Water column measurements were complemented with occasional sampling in the main rivers feeding the lake and in the interstitial waters of a sediment core. The presence of MA(III) and TMAO and the predominance of iAs(V) in lake and river samples has been confirmed as well as the key role of algae in the formation of organic species. While the total 'dissolved' As concentrations showed nearly vertical profiles in the Petit Lac, As concentrations steadily increase at deeper depths in the Grand Lac due to the lack of mixing and build up in bottom waters. The evaluation of 25 years of monthly data of 'dissolved' As concentrations showed no significant temporal trends between 1997 and 2021. The observed seasonal character of the 'dissolved' As along this period coincides with a lack of seasonality in As mass inventories, pointing to a seasonal internal cycling of As species in the water column with exchanges between the 'dissolved' and 'particulate' (i.e., algae) fractions.


Subject(s)
Arsenic , Water Pollutants, Chemical , Arsenic/analysis , Lakes , Methylation , Switzerland , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water/analysis , Oxidation-Reduction , Environmental Monitoring
3.
Anal Chem ; 94(40): 13995-14003, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36179120

ABSTRACT

An automated and high-throughput (36 h-1) method for extremely sensitive determination of the two main tellurium species in the environment, namely, tellurite (TeIV) and tellurate (TeVI), was developed. Flow injection hydride generation was interfaced for the first time with inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS) detection to assure interference-free tellurium analysis. ICP-MS/MS conditions were studied in detail. Using a mixture of He + O2 gases in the reaction cell, the background signals significantly dropped and Xe isobaric interference was eliminated, allowing measurement with the most abundant Te isotopes, that is, 128Te and 130Te, and offering a huge increase in sensitivity. Volatile H2Te was selectively generated by a HCl/NaBH4 reaction from TeIV or from both TeIV and TeVI (TeIV+VI) after pre-reduction of TeVI by a TiCl3 solution. The optimum conditions for TiCl3 as a pre-reductant and the pre-reduction kinetics were also investigated. Different reduction rates were found depending on the sample stabilization media (HCl, HNO3, or EDTA). The same sensitivity was found for TeIV and TeVI, measured after pre-reduction, and no significant matrix effect was observed in both fresh and seawaters. Therefore, external calibration was used for quantification in real samples. Under optimal conditions, this method reached an unprecedented limit of detection of 0.07 ng L-1 for both TeIV and TeIV+VI and an intra-day repeatability of 5.2% at the 5 ng L-1 level. The methodology was successfully applied to the speciation analyses in commercially available certified reference materials of river water and seawater, and in bottled water and lake water samples.


Subject(s)
Drinking Water , Tellurium , Drinking Water/analysis , Edetic Acid , Gases , Reducing Agents , Tandem Mass Spectrometry , Tellurium/chemistry , Titanium/analysis
4.
Anal Chem ; 94(38): 13163-13170, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36103608

ABSTRACT

Hydride atomization and the fate of free analyte atoms in an externally heated quartz tube atomizer (QTA) were investigated employing selected ion flow tube mass spectrometry (SIFT-MS). SIFT-MS proved to be ideally suited to study water concentration in gases leaving the atomizer. This made it possible to quantify the oxygen "contaminant" flow rate to QTA as 0.04-0.05 mL min-1. This is valid for typical conditions of hydride generation. Most significantly, studies of temperature influence on water concentration resulted in detailed insight into hydrogen radical-forming reactions between oxygen and hydrogen. Minimum QTA temperatures required to generate hydrogen radicals under a variety of different flow rates and compositions of the QTA atmosphere were found to be in the range between 585 and 800 °C. The ability of SIFT-MS to detect extremely low concentrations of arsane and selane was employed to quantify the fraction of As and Se removed from the QTA in the form of hydride in dependence on QTA temperature under typical conditions of hydride generation. It was found that free As atoms formed by atomization of arsane decay to different species than to arsane. In the case of selane under typical atomization conditions, the efficiency of the decay of free Se atoms to selane was between 50 and 100% in dependence on actual flow rates and compositions of the QTA atmosphere.


Subject(s)
Quartz , Water , Hydrogen , Mass Spectrometry/methods , Nebulizers and Vaporizers , Oxygen , Selenium Compounds , Water/analysis
5.
Sci Total Environ ; 819: 152008, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34852251

ABSTRACT

Arsenic incorporation into newly formed As sulfides has recently been identified as an important As sequestration pathway in both laboratory experiments and natural As-wetlands. Here, we used an in situ experimental technique with double nylon experimental bags (10-µm mesh) to study the effect of low-cost organic materials (sawdust, wood cubes and hemp shives) on As sulfidation in three naturally As-enriched wetland soils under water-saturated (~1 m depth) and neutral pH conditions. After 15 months of in situ incubation, all of the organic materials and their corresponding inner bags were covered by yellow-black mineral accumulations, dominantly composed of crystalline As4S4 polymorphs (realgar and bonazziite) and reactive Fe(II) sulfides (probably mackinawite); while the major fraction of As (~80%) was sequestered as AsS minerals. The amount of As accumulation in the experimental bags varied significantly (0.03-4.24 g As kg-1) and corresponded with different levels of As (0.23-9.4 mg As L-1) in the groundwater. Our findings suggest an authigenic formation of AsS minerals in strongly reducing conditions of experimental bags by a combination of reduced exchange of solutes through the pores of the bag and comparatively fast microbial production of dissolved sulfide. Arsenic sulfide formation, as an effective treatment mechanism for natural and human-constructed wetlands, appears to be favored for As(III)-rich waters with a low Fe(II)/As(III) molar ratio. These conditions prevent the consumption of dissolved As and sulfide by their preferential incorporation into natural organic matter, and newly-formed Fe(II) sulfides, respectively.


Subject(s)
Arsenic , Groundwater , Arsenic/chemistry , Groundwater/chemistry , Humans , Minerals , Oxidation-Reduction , Soil/chemistry , Wetlands
6.
Anal Chim Acta ; 1190: 339256, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34857132

ABSTRACT

Atomization of hydrides and their methylated analogues in a dielectric barrier discharge (DBD) plasma atomizer was investigated. Selected ion flow tube mass spectrometry (SIFT-MS) was chosen as a detector being capable of selective detection of non-atomized original volatile species allowing thus direct quantification of atomization efficiency. Selenium hydride (SeH2) and three volatile arsenic species, namely arsenic hydride (AsH3), monomethylarsane (CH3AsH2) and dimethylarsane ((CH3)2AsH), were selected as model analytes. The mechanistic study performed contributes to understanding of the atomization processes in atomic absorption spectrometry (AAS). The presented results are compatible with a complete atomization of arsenic hydride as well as its methylated analogues and with atomization efficiency of SeH2 below 80%. Using AsH3 as a model analyte and a combination of AAS and SIFT-MS detectors has revealed that the hydride is not atomized, but decomposed in the DBD atomizer in absence of hydrogen fraction in the carrier gas. Apart from investigation of analyte atomization, the SIFT-MS detector is capable of quantitative determination of water vapor content being either transported to, or produced in the atomizer. This information is crucial especially in the case of the low-power/temperature DBD atomizer since its performance is sensitive to the amount of water vapor introduced into the plasma.


Subject(s)
Arsenic , Hydrogen , Mass Spectrometry , Nebulizers and Vaporizers , Spectrophotometry, Atomic
7.
mBio ; 12(5): e0190221, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34700381

ABSTRACT

The ability of bacterial pathogens to acquire essential micronutrients is critical for their survival in the host environment. Manganese plays a complex role in the virulence of a variety of pathogens due to its function as an antioxidant and enzymatic cofactor. Therefore, host cells deprive pathogens of manganese to prevent or attenuate infection. Here, we show that evolution of the human-restricted pathogen Bordetella pertussis has selected for an inhibitory duplication within a manganese exporter of the calcium:cation antiporter superfamily. Intriguingly, upon exposure to toxic levels of manganese, the nonfunctional exporter becomes operative in resister cells due to a unique reverse adaptation mechanism. However, compared with wild-type (wt) cells, the resisters carrying a functional copy of the exporter displayed strongly reduced intracellular levels of manganese and impaired growth under oxidative stress. Apparently, inactivation of the manganese exporter and the resulting accumulation of manganese in the cytosol benefited the pathogen by improving its survival under stress conditions. The inhibitory duplication within the exporter gene is highly conserved among B. pertussis strains, absent from all other Bordetella species and from a vast majority of organisms across all kingdoms of life. Therefore, we conclude that inactivation of the exporter gene represents an exceptional example of a flexible genome decay strategy employed by a human pathogen to adapt to its exclusive host. IMPORTANCE Bordetella pertussis, a respiratory pathogen restricted to humans, continuously adapts its genome to its exclusive host. We show that speciation of this reemerging pathogen was accompanied by loss of function of the manganese exporter. Intriguingly, the functionality of the exporter can be restored in the presence of toxic levels of manganese by a unique genetic modification. However, compared with the wt strain, the strain carrying the functional exporter failed to resist the oxidative stress in vitro. Thus, our data demonstrate that inactivation of the exporter resulting in manganese accumulation assists B. pertussis in adaptation to oxidative stress. We conclude that this sophisticated process of reverse adaptation enables B. pertussis to adjust to rapidly changing environments by facilitating its resistance to both manganese toxicity and manganese scarcity.


Subject(s)
Bordetella pertussis/drug effects , Bordetella pertussis/pathogenicity , Manganese/toxicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bordetella pertussis/genetics , Gene Expression Regulation, Bacterial/drug effects , Humans , Oxidative Stress , Virulence/drug effects , Virulence Factors/genetics , Whooping Cough/prevention & control
8.
Cancers (Basel) ; 13(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34283078

ABSTRACT

An important group of breast cancers is those associated with inherited susceptibility. In women, several predisposing mutations in genes involved in DNA repair have been discovered. Women with a germline pathogenic variant in BRCA1 have a lifetime cancer risk of 70%. As part of a larger prospective study on heavy metals, our aim was to investigate if blood arsenic levels are associated with breast cancer risk among women with inherited BRCA1 mutations. A total of 1084 participants with pathogenic variants in BRCA1 were enrolled in this study. Subjects were followed from 2011 to 2020 (mean follow-up time: 3.75 years). During that time, 90 cancers were diagnosed, including 67 breast and 10 ovarian cancers. The group was stratified into two categories (lower and higher blood As levels), divided at the median (<0.85 µg/L and ≥0.85 µg/L) As level among all unaffected participants. Cox proportional hazards models were used to model the association between As levels and cancer incidence. A high blood As level (≥0.85 µg/L) was associated with a significantly increased risk of developing breast cancer (HR = 2.05; 95%CI: 1.18-3.56; p = 0.01) and of any cancer (HR = 1.73; 95%CI: 1.09-2.74; p = 0.02). These findings suggest a possible role of environmental arsenic in the development of cancers among women with germline pathogenic variants in BRCA1.

9.
Ecotoxicol Environ Saf ; 216: 112196, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33848737

ABSTRACT

Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.

10.
Anal Bioanal Chem ; 413(13): 3443-3453, 2021 May.
Article in English | MEDLINE | ID: mdl-33755769

ABSTRACT

Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.

11.
Talanta ; 225: 121972, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592806

ABSTRACT

A method for the speciation analysis of the three main species of germanium in environmental waters, namely inorganic germanium (iGe), monomethyl germanium (MMGe) and dimethyl germanium (DMGe), has been developed. Germanium species were volatilized by hydride generation (HG) prior to their preconcentration/separation in a semi-automated cryogenic trap (cryotrapping, CT) and detection by ICP-MS/MS. A procedure to minimize the iGe blanks from the chemicals and water is reported. One mL of water can be analyzed without any pretreatment. After application of this procedure, and the careful optimization of all experimental variables, limits of detection (LOD) of 0.015, 0.005 and 0.003 ng L-1 have been obtained for iGe, MMGe and DMGe, respectively. Standard addition experiments did not show any significant matrix effect, and, therefore, external calibration was used for sample analysis. In the Tris-HCl + L-Cysteine reaction media, additional experiments did not reveal any significant demethylation of MMGe to iGe in the process of HG-CT, which could affect the accuracy of the analysis in seawater. The method has been applied to the analysis of iGe, MMGe and DMGe in certified reference materials of unspiked natural waters: CASS-4, CASS-5 and CASS-6 (nearshore seawater); NASS-5 and NASS-7 (seawater); SLRS-4, SLRS-5 and SLRS-6 (river water).

12.
Anal Chim Acta ; 1119: 68-76, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32439056

ABSTRACT

Severe changes in speciation information were observed during volatile species generation (VSG) due to de-alkylation of generated Hg species as proven by cryogenic trapping with inductively coupled plasma mass spectrometric detection (CT-ICP-MS). Methyl mercury hydride is de-methylated to Hg0 by 45% and 6%, respectively, in HCl and TRIS buffer media. Ethylmercury hydride is de-ethylated to Hg0 by 71% and 28%, respectively in HCl and TRIS buffer media. Only Hg0 as a volatile product was observed when generating from phenylmercury regardless of the reaction medium employed. These findings limit significantly the application of VSG to Hg speciation analysis, especially the possibility of generation of alkyl-substituted mercury hydrides for cryogenic trapping/separation or gas chromatography. On the contrary, post-column VSG of Hg species prior to spectrometric detection can be employed to enhance sensitivity without any negative effects on accuracy and precision of the results.

13.
Environ Sci Pollut Res Int ; 26(28): 29012-29019, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31388949

ABSTRACT

The use of alternative fuels or biofuel blends could be a way to reduce the environmental burden of increasing traffic. The aim of this study was to compare emissions from conventional fuels and alternative biofuels for diesel and spark-ignition engines under comparable conditions, i.e., using the World Harmonized Transient Cycle for a heavy-duty diesel engine and the Artemis CADC driving cycle for automobiles powered by gasoline and alternative fuels. Total contents of Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were determined in emissions, fuels, and lubricating oils. In addition, the bioaccessibility of metals in emissions was also assessed by extraction in water and in simulated lung fluid (Gamble's solution). Total particulate mass emissions, expressed per kilogram of fuel, and total contents of metals were higher for the diesel engine than for spark-ignition engines. The highest metal contents in emissions from diesel and gasoline fuels were found for Fe, Zn, and Cu. Fe and Cu in emissions from diesel and spark-ignition engines declined with the addition of bio-components in fuels. However, there was no significant decrease in the contents of other metals in emissions from biofuels. The highest degrees of bioaccessibility were observed for Ba, Zn, Cd, and V in emissions from diesel and biodiesel (according to their solubility in water). On the basis of this study, the use of biodiesel (especially methylesters of rapeseed oil) can be recommended to reduce the total mass of particulate and metal emissions from diesel engines.


Subject(s)
Biofuels , Gasoline , Metals/analysis , Oils , Rapeseed Oil , Vehicle Emissions
14.
Anal Chim Acta ; 1049: 20-28, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30612652

ABSTRACT

It is advisable to monitor and regulate inorganic arsenic (iAs) in food and feedstuff. This work describes an update and validation of a method of selective hydride generation (HG) with inductively coupled plasma mass spectrometry (ICP-MS) for high-throughput screening of iAs content in seafood samples after microwave-assisted extraction with diluted nitric acid and hydrogen peroxide. High concentration of HCl (8 M) for HG along with hydrogen peroxide in samples of a same concentration as used for extraction leads to a selective conversion of iAs to volatile arsine that is released and transported to the detector. A minor contribution from methylarsonate (≈20% to iAs) was found, while HG from dimethylarsinate, trimethylarsine oxide is substantially suppressed (less than 1% to iAs). Methodology was applied to Certified Reference Materials (CRMs) TORT-3, DORM-3, DORM-4, DOLT-4, DOLT-5, PRON-1, SQID-1 and ERM-CE278k, in some of them iAs has been determined for the first time, and to various seaweed samples from a local store. The results were always compared with a reference method and selectivity of iAs determination was evaluated. An inter-laboratory reproducibility was tested by comparative analyses of six fish and four seaweed samples in three European laboratories, with good agreement of the results. The method of HG-ICP-MS is sensitive (limit of detection 2 µg kg-1 iAs), well suited for screening of large number of samples and selective at iAs concentration levels at which maximum limits are expected to be set into EU legislation for marine samples.


Subject(s)
Arsenic/analysis , Fish Proteins, Dietary/analysis , Food Contamination/analysis , Hydrogen/chemistry , Mass Spectrometry/methods , Shellfish/analysis , Animals , Bivalvia/chemistry , Decapoda/chemistry , Decapodiformes/chemistry , Dogfish , Hydrochloric Acid/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Perchlorates/chemistry , Seaweed/chemistry
15.
Anal Chim Acta ; 1028: 11-21, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-29884347

ABSTRACT

Atomization of SeH2 in an externally heated multiple microflame quartz tube atomizer (MMQTA) as well as planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes. Deposits of Se on inner surfaces of the atomizers were quantified and their distribution visualized by autoradiography with 75Se radiotracer. The gas phase fraction of Se transported beyond the confines of the atomizers was also determined. In the MMQTA, a 15% mass fraction of Se was deposited in a narrow zone at both colder ends of the optical arm (100-400 °C). By contrast, a 25-40% mass fraction of Se was deposited homogeneously along the entire length of the optical arm of the DBD, depending on detection technique employed. The fraction of Se transported outside the MMQTA approached 90%, whereas it was 50-70% in the DBD. The presence of H2 was essential for atomization of selenium hydride in both atomizers. The gaseous effluent arising from the hydride generator as well as the atomizers was investigated by direct analysis in real time (DART) coupled to an Orbitrap-mass spectrometer, enabling identification of major gas phase species of Se.

16.
Anal Bioanal Chem ; 410(18): 4469-4479, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29721576

ABSTRACT

Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.

17.
Environ Pollut ; 237: 83-92, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29477118

ABSTRACT

Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As2O3) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg-1). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb5(AsO4)3(Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As.


Subject(s)
Arsenic/analysis , Industrial Waste/analysis , Refuse Disposal/methods , Soil Pollutants/analysis , Soil/chemistry , Copper/analysis , Dust/analysis , Environmental Monitoring , Metallurgy , Metals/analysis
18.
Anal Chim Acta ; 1005: 16-26, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29389315

ABSTRACT

Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.

19.
Anal Chem ; 89(18): 9633-9637, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28809551

ABSTRACT

A method for analysis of toxicologically important arsenic species in blood plasma and whole blood by selective hydride generation with cryotrapping (HG-CT) coupled either to atomic absorption spectrometry (AAS) with a quartz multiatomizer or to inductively coupled plasma mass spectrometry (ICPMS) has been validated. Sample preparation, which involved only 5 times dilution with addition of Triton X-100, Antifoam B, and l-cysteine, suppressed excessive foaming in a hydride generator. Calibration slopes for whole blood and blood plasma spiked with arsenate, monomethylarsonate, and dimethylarsinate at 0.25-1 µg L-1 As and 0.025-0.1 µg L-1 As for AAS and ICPMS detection, respectively, did not differ from slopes in aqueous solutions. HG-CT-AAS was used to analyze samples with elevated levels of arsenic species-blood plasma from patients treated with arsenic trioxide for acute promyelocytic leukemia and whole blood from mice fed an arsenic-containing diet. A good agreement between results of the direct analysis and analysis after mild digestion in phosphoric acid proved the good efficiency of the direct HG-CT procedure for the arsenic species in these types of biological samples. In the next step, plasma and whole blood from healthy donors that were spiked with the plasma from leukemia patients at levels of 0.15-0.4 µg L-1 As were analyzed by direct HG-CT-ICPMS. Good recoveries for all species even at these low levels (88-104%) were obtained. Limits of detection in blood and plasma were 0.014 µg L-1 for inorganic arsenic and below 0.002 µg L-1 As for methylated arsenic species. Thus, the ultrasensitive direct HG-CT-ICPMS method is uniquely suited for analyses of blood plasma and whole blood from individuals at low exposure levels.


Subject(s)
Arsenic/blood , Mass Spectrometry/methods , Animals , Arsenic/administration & dosage , Healthy Volunteers , Humans , Mice
20.
Anal Chim Acta ; 977: 10-19, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28577593

ABSTRACT

This work is a comprehensive study on chemical generation of volatile species (VSG) of copper for analytical atomic spectrometry. VSG was carried out in a flow injection mode in a special arrangement of the generator. Atomization in a diffusion flame atomizer (DF) with atomic absorption spectrometry detection was mostly used for VSG optimization. Inductively coupled plasma mass spectrometry (ICP-MS) was utilized to investigate generation efficiencies and feasibility of VSG system for ultratrace analysis. Concentration of individual reagents, namely of nitric acid, sodium tetrahydroborate and various reaction modifiers, was optimized with respect to generation efficiency. Triton X-100 and Antifoam B were chosen as the best combination of the modifiers owing to sixfold increase in sensitivity, decrease of tailing of measured signals and long-term repeatability. The addition of 500 µg L-1 of Ag was found crucial to maintain identical generation efficiency at low concentrations of Cu. This phenomenon was ascribed to the change in the size of generated species. The release and generation efficiency were accurately determined as 56-58 and 31-32%, respectively. The contribution of co-generated aerosol to release and generation efficiency measured by means of Cs and Ba was found negligible, only 0.40 and 0.13%, respectively, which underlines highly efficient VSG of Cu. The nature of volatile species was investigated by various approaches. The results cannot provide the decisive evidence. However, experiments with the DF, ICP-MS and transmission electron microscopy (TEM) indicate that the generated species are not volatile in the true sense but that they are strongly associated with fine aerosol co-generated during VSG. Cu clusters or nanoparticles of very small size (< 10 nm) are presumed but the formation of metastable copper hydride cannot be conclusively excluded.

SELECTION OF CITATIONS
SEARCH DETAIL
...