Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008339

ABSTRACT

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Subject(s)
Inflammation , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Signal Transduction , Humans , Inflammation/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
2.
Eur J Med Chem ; 260: 115717, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598483

ABSTRACT

Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.


Subject(s)
Microsomes , Quinazolines , Humans , Animals , Mice , Quinazolines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2
3.
Bioorg Med Chem Lett ; 76: 129010, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36184029

ABSTRACT

Novel 4-aminoquinazoline-6-carboxamide derivatives bearing differently substituted aryl or heteroaryl groups at position 7 in the core were rationally designed, synthesized and evaluated for biological activity in vitro as phosphatidylinositol 4-kinase IIα (PI4K2A) inhibitors. The straightforward approach described here enabled the sequential, modular synthesis and broad functionalization of the scaffold in a mere six steps. The SAR investigation reported here is based on detailed structural analysis of the conserved binding mode of ATP and other adenine derivatives to the catalytic site of type II PI4Ks, combined with extensive docking studies. Several compounds exhibited significant activity against PI4K2A. Moreover, we solved a crystal structure of PI4K2B in complex with one of our lead ligand candidates, which validated the ligand binding site and pose predicted by our docking-based ligand model. These discoveries suggest that our structure-based approach may be further developed and employed to synthesize new inhibitors with optimized potency and selectivity for this class of PI4Ks.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Adenosine Triphosphate , 1-Phosphatidylinositol 4-Kinase/chemistry , 1-Phosphatidylinositol 4-Kinase/metabolism , Ligands , Adenosine Triphosphate/metabolism , Adenine , Structure-Activity Relationship , Drug Design , Molecular Docking Simulation
4.
Beilstein J Org Chem ; 18: 549-554, 2022.
Article in English | MEDLINE | ID: mdl-35651698

ABSTRACT

The only known sulfur-containing karrikin, 3-methyl-2H-thiopyrano[3,4-b]furan-2-one, has been recently identified as an extremely efficient neuroprotective butenolide. Herein, we report the targeted synthesis of this compound as well as new synthetic protocols toward a class of compounds derived from 2H-furo[2,3-c]pyran-2-ones (karrikins) via bioisosteric exchange of oxygen with sulfur. In particular, we present synthetic procedures toward bioisosteres of karrikins with one or two sulfur heteroatoms incorporated into the core backbone together with evaluation of their biological activity in inhibition of acetylcholinesterase.

5.
Eur J Pharmacol ; 927: 175056, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35636520

ABSTRACT

The goal of this study was to evaluate mixed cortical and hippocampal primary rat postnatal neuronal culture as in vitro tool for identification of N-methyl-D-aspartate receptor (NMDAR) antagonists and to find out, whether this model is comparable with other commonly used primary rat neuronal models differing in their origin (pure cortical vs. mixed cortical and hippocampal) and differentiation state (embryonal vs. postnatal). Induced pluripotent stem cell (iPSC) - derived human glutamatergic neurons have been included in this study as well. First, the cultures were characterized by their neuron/astrocyte composition, the mRNA expression of NR2B/NR2A NMDAR subunit ratios, and the expression of glutamate transporters (GLT1, GLAST). Then, selected endogenous steroids and synthetic neuroactive steroids that have been previously identified as negative allosteric modulators of recombinant GluN1/GluN2B NMDA receptors, were evaluated for their ability to prevent an NMDA or glutamate-induced Ca2+ influx (acute effect) and excitotoxicity over 24 h. Though the neuroprotective potential against excitotoxic stimuli varied among the models studied, postnatal mixed cortical and hippocampal culture proved to be a convenient and robust tool for NMDAR antagonist screening. The most widely used embryonal (E18) cultures offered higher cell yields but at the expense of a higher sensitivity to compounds' cytotoxicity. iPSC-derived neurons were not found to be superior to rat cultures for screening purposes.


Subject(s)
Neurons , Receptors, N-Methyl-D-Aspartate , Animals , Cells, Cultured , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Hippocampus , Rats , Receptors, N-Methyl-D-Aspartate/metabolism
6.
JACS Au ; 1(1): 23-30, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33554213

ABSTRACT

The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.

7.
Bioorg Med Chem ; 32: 115998, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33440320

ABSTRACT

In analogy to antiviral acyclic nucleoside phosphonates, a series of 5-amino-3-oxo-1,2,4-thiadiazol-3(2H)-ones bearing a 2-phosphonomethoxyethyl (PME) or 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) group at the position 2 of the heterocyclic moiety has been synthesized. Diisopropyl esters of PME- and HPMP-amines have been converted to the N-substituted ureas and then reacted with benzoyl, ethoxycarbonyl, and Fmoc isothiocyanates to give the corresponding thiobiurets, which were oxidatively cyclized to diisopropyl esters of 5-amino-3-oxo-2-PME- or 2-HPMP- 1,2,4-thiadiazol-3(2H)-ones. The phosphonate ester groups were cleaved with bromotrimethylsilane, yielding N5-protected phosphonic acids. The subsequent attempts to remove the protecting group from N5 under alkaline conditions resulted in the cleavage of the 1,2,4-thiadiazole ring. Similarly, compounds with a previously unprotected 5-amino-1,2,4-thiadiazolone base moiety were stable only in the form of phosphonate esters. The series of twenty-one newly prepared 1,2,4-thiadiazol-3(2H)-ones were explored as potential inhibitors of cysteine-dependent enzymes - human cathepsin K (CatK) and glycogen synthase kinase 3ß (GSK-3ß). Several compounds exhibited an inhibitory activity toward both enzymes in the low micromolar range. The inhibitory potency of some of them toward GSK-3ß was similar to that of the thiadiazole GSK-3ß inhibitor tideglusib, whereas others exhibited more favorable toxicity profile while retaining good inhibitory activity.


Subject(s)
Antineoplastic Agents/pharmacology , Cathepsin K/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Nucleosides/pharmacology , Organophosphonates/pharmacology , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cathepsin K/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry
8.
J Steroid Biochem Mol Biol ; 189: 195-203, 2019 05.
Article in English | MEDLINE | ID: mdl-30872014

ABSTRACT

A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity. Pretreatment with neurosteroids significantly reduced acute L-glutamic acid or NMDA excitotoxicity mediated by Ca2+ entry and consequent ROS (reactive oxygen species) release and caspase-3 activation. Compounds 6 (IC50 = 5.8 µM), 7 (IC50 = 12.2 µM), 9 (IC50 = 7.8 µM), 13 (IC50 = 1.1 µM) and 16 (IC50 = 8.2 µM) attenuated glutamate-induced Ca2+ entry more effectively than memantine (IC50 = 18.9 µM). Moreover, compound 13 shows comparable effect with MK-801 (IC50 = 1.2 µM) and also afforded significant protection without any adverse effect upon prolonged exposure. This drop in Ca2+ level resulted in corresponding ROS suppression and prevented glutamate-induced caspase-3 activation. Therefore, compound 13 has great potential for development into a therapeutic agent for improving glutamate-related nervous system diseases.


Subject(s)
Neurons/drug effects , Neuroprotective Agents/pharmacology , Neurotransmitter Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Cells, Cultured , Glutamic Acid/adverse effects , N-Methylaspartate/adverse effects , Neurons/cytology , Neurons/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/chemistry , Neurotransmitter Agents/chemistry , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
9.
Steroids ; 147: 4-9, 2019 07.
Article in English | MEDLINE | ID: mdl-30296546

ABSTRACT

Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3ß-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.


Subject(s)
Androstenols/pharmacology , Cholesterol/pharmacology , Dicarboxylic Acids/pharmacology , Esters/pharmacology , Neuroprotective Agents/pharmacology , Pregnenolone/analogs & derivatives , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Androstenols/blood , Androstenols/chemistry , Animals , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Cell Survival/drug effects , Cholesterol/blood , Cholesterol/chemistry , Dicarboxylic Acids/blood , Dicarboxylic Acids/chemistry , Drug Stability , Esters/blood , Esters/chemistry , Hep G2 Cells , Humans , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/blood , Neuroprotective Agents/chemistry , Pregnenolone/blood , Pregnenolone/pharmacology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Tumor Cells, Cultured
10.
J Med Chem ; 60(1): 100-118, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28004945

ABSTRACT

Phosphatidylinositol 4-kinase IIIß (PI4KB) is indispensable for the replication of various positive-sense single stranded RNA viruses, which hijack this cellular enzyme to remodel intracellular membranes of infected cells to set up the functional replication machinery. Therefore, the inhibition of this PI4K isoform leads to the arrest of viral replication. Here, we report on the synthesis of novel PI4KB inhibitors, which were rationally designed based on two distinct structural types of inhibitors that bind in the ATP binding side of PI4KB. These "hybrids" not only excel in outstanding inhibitory activity but also show high selectivity to PI4KB compared to other kinases. Thus, these compounds exert selective nanomolar or even subnanomolar activity against PI4KB as well as profound antiviral effect against hepatitis C virus, human rhinovirus, and coxsackievirus B3. Our crystallographic analysis unveiled the exact position of the side chains and explains their extensive contribution to the inhibitory activity.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Design , HeLa Cells , Humans , Molecular Structure
11.
J Med Chem ; 60(1): 119-127, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28004946

ABSTRACT

The lipid kinase phosphatidylinositol 4-kinase IIIß (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.


Subject(s)
Enzyme Inhibitors/pharmacology , Fluorescent Dyes/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Molecular Docking Simulation
12.
Epigenetics ; 6(6): 769-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21566456

ABSTRACT

Restoration of transcriptionally silenced genes by means of methyltransferases inhibitors plays a crucial role in the current therapy of myelodysplastic syndromes and certain types of leukemias. A comparative study of hypomethylating activities of a series of 5-azacytidine nucleosides: 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC) and its α-anomer (α-DAC), 5,6-dihydro-5-azacytidine (DHAC), 2'-deoxy-5,6-dihydro-5-azacytidine (DHDAC, KP-1212) and its α-anomer (α-DHDAC), and of a 2-pyrimidone ribonucleoside (zebularine) was conducted. Methylation-specific PCR was employed to detect the efficiency of individual agents on cyclin-dependent kinase inhibitor 2B and thrombospondin-1 hypermethylated gene loci. Overall changes in DNA methylation level were quantified by direct estimation of 5-methyl-2'-deoxycytidine-5'-monophosphate by HPLC using digested genomic DNA. Flow cytometric analysis of cell cycle progression and apoptotic markers was used to determine cytotoxicity of the compounds. mRNA expression was measured using qRT-PCR. 2'-deoxy-5,6-dihydro-5-azacytidine was found to be less cytotoxic and more stable than 2'-deoxy-5-azacytidine at the doses that induce comparable DNA hypomethylation and gene reactivation. This makes it a valuable tool for epigenetic research and worth further investigations to elucidate its possible therapeutic potential.


Subject(s)
Azacitidine/analogs & derivatives , DNA Methylation/drug effects , Apoptosis/drug effects , Azacitidine/chemistry , Azacitidine/pharmacology , Decitabine , Gene Expression Regulation , Genetic Loci , Genome, Human , Humans , Molecular Structure , RNA, Messenger/genetics , Thrombospondin 1/genetics
13.
Anticancer Res ; 30(7): 2791-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20683014

ABSTRACT

BACKGROUND/AIM: 9-[2-(phosphonomethoxy)ethyl] guanine (PMEG) is a guanine acyclic nucleotide analog whose targeted prodrugs are being investigated for chemotherapy of lymphomas. Its antiproliferative effects have been attributed to cell cycle arrest and induction of apoptosis, however, the underlying mechanisms remain poorly understood. The objective of this study was to determine the requirements for caspase and CD95/Fas activation in PMEG-induced apoptosis. Additionally, the influence of PMEG on cell cycle regulatory proteins was explored. MATERIALS AND METHODS: CCRF-CEM cells were exposed to PMEG with/without caspase inhibitor or anti-Fas blocking antibody and assayed for phosphatidyl serine externalization, mitochondrial depolarization and the cleavage of procaspase 3 and the nuclear protein poly (ADP-ribose) polymerase (PARP). RESULTS: Despite an observed increase of caspase 3, 8 and 9 proteolytic activity, neither pretreatment of the cells with cell-permeable caspase inhibitors nor blocking the death receptor with anti-Fas antibody did prevent apoptosis induced by PMEG. CONCLUSION: PMEG-induced apoptosis is caspase- and CD95/Fas-independent.


Subject(s)
Apoptosis/drug effects , Caspases/metabolism , Guanine/analogs & derivatives , Organophosphorus Compounds/pharmacology , T-Lymphocytes/drug effects , fas Receptor/metabolism , Apoptosis/physiology , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Line, Tumor , Cyclin E/biosynthesis , Cyclin E/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/biosynthesis , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Cyclin-Dependent Kinases/biosynthesis , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Guanine/pharmacology , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Oncogene Proteins/biosynthesis , Oncogene Proteins/genetics , S Phase/drug effects , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...