Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 51(6): 1774-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23554191

ABSTRACT

Access to sputum smear microscopy in high-tuberculosis (TB)-burden regions is limited by a scarcity of microscopes and experienced technicians. We evaluated the accuracy of CellScope, a novel digital fluorescence microscope that may expand access to microscopy. The study utilized smear microscopy slides prepared from sputum specimens submitted by consecutive adults with ≥ 2 weeks of cough who were admitted to Mulago Hospital (Kampala, Uganda). Conventional light-emitting diode (LED) fluorescence microscopy (FM) and mycobacterial culture were performed by experienced technicians. Two U.S.-based postgraduate researchers without prior microscopy experience restained, imaged, and interpreted the slides using CellScope. We assessed whether sensitivity and specificity of CellScope-based LED FM was noninferior to conventional LED FM by using a preselected margin of inferiority of 15%. Of 525 patients included, 72% were HIV seropositive and 39% had culture-confirmed TB. The proportions of positive results were similar with CellScope and conventional LED FM (34% versus 32%, respectively; P = 0.32), and agreement was substantial. CellScope accuracy was within the noninferiority margin for both sensitivity (63% versus 70%; difference, -7%; 95% confidence interval [CI], -13% to -1%) and specificity (85% versus 92%; difference, -7%; 95% CI, -12% to -3%). A subanalysis of 43 slides evaluated by each CellScope reader found substantial interreader reliability (custom-weighted kappa, 0.65) and variable intrareader reliability (custom-weighted kappa, 0.11 versus 0.48). CellScope offers promise for expanding microscopy services. Future studies should evaluate the device when operated by health workers in low-resource settings, the feasibility of image transmission and analysis by experienced microscopists, and the accuracy of automated image analysis algorithms.


Subject(s)
Bacteriological Techniques/methods , Microscopy, Fluorescence/methods , Point-of-Care Systems , Tuberculosis/diagnosis , Adult , Female , Humans , Male , Sensitivity and Specificity , Specimen Handling/methods , Sputum/microbiology , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...