Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Neurobiol ; 73(6): 455-68, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23362219

ABSTRACT

Behavioral responses to social stimuli often vary according to endocrine state. Our previous work has suggested that such changes in behavior may be due in part to hormone-dependent sensory processing. In the auditory forebrain of female white-throated sparrows, expression of the immediate early gene ZENK (egr-1) is higher in response to conspecific song than to a control sound only when plasma estradiol reaches breeding-typical levels. Estradiol also increases the number of detectable noradrenergic neurons in the locus coeruleus and the density of noradrenergic and serotonergic fibers innervating auditory areas. We hypothesize, therefore, that reproductive hormones alter auditory responses by acting on monoaminergic systems. This possibility has not been examined in males. Here, we treated non-breeding male white-throated sparrows with testosterone to mimic breeding-typical levels and then exposed them to conspecific male song or frequency-matched tones. We observed selective ZENK responses in the caudomedial nidopallium only in the testosterone-treated males. Responses in another auditory area, the caudomedial mesopallium, were selective regardless of hormone treatment. Testosterone treatment reduced serotonergic fiber density in the auditory forebrain, thalamus, and midbrain, and although it increased the number of noradrenergic neurons detected in the locus coeruleus, it reduced noradrenergic fiber density in the auditory midbrain. Thus, whereas we previously reported that estradiol enhances monoaminergic innervation of the auditory pathway in females, we show here that testosterone decreases it in males. Mechanisms underlying testosterone-dependent selectivity of the ZENK response may differ from estradiol-dependent ones


Subject(s)
Auditory Pathways/physiology , Breeding , Dopamine beta-Hydroxylase/genetics , Early Growth Response Protein 1/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Testosterone/physiology , Vocalization, Animal/physiology , Acoustic Stimulation/methods , Animals , Breeding/methods , Dopamine beta-Hydroxylase/metabolism , Early Growth Response Protein 1/metabolism , Male , Random Allocation , Seasons , Serotonin Plasma Membrane Transport Proteins/metabolism , Sparrows , Starlings
2.
PLoS One ; 7(6): e39388, 2012.
Article in English | MEDLINE | ID: mdl-22724011

ABSTRACT

Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.


Subject(s)
Auditory Pathways/physiology , Catecholamines/metabolism , Hearing/physiology , Neurons/metabolism , Singing , Songbirds/physiology , Acoustic Stimulation , Animals , Female , Male , Phosphorylation , Tyrosine 3-Monooxygenase/metabolism , Vocalization, Animal/physiology
3.
Behav Neurosci ; 126(1): 110-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21942431

ABSTRACT

Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (a) serotonergic fibers innervate auditory areas; (b) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (c) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing.


Subject(s)
Auditory Pathways/metabolism , Estradiol/pharmacology , Serotonergic Neurons/metabolism , Sparrows/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Auditory Pathways/drug effects , Auditory Perception/drug effects , Auditory Perception/physiology , Female , Hydroxyindoleacetic Acid/metabolism , Serotonergic Neurons/drug effects
4.
Eur J Neurosci ; 34(3): 416-25, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21714815

ABSTRACT

A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found that evidence of interhemispheric differences, both in immunoreactivity and catecholamine content that did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhanced catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Cortex/drug effects , Breeding , Catecholamines/metabolism , Estradiol/pharmacology , Songbirds/anatomy & histology , Songbirds/physiology , Animals , Auditory Cortex/physiology , Estradiol/blood , Female , Male , Neural Pathways/anatomy & histology , Neural Pathways/drug effects , Neural Pathways/physiology , Photoperiod , Seasons , Vocalization, Animal/drug effects , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...