Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transgenic Res ; 30(4): 461-498, 2021 08.
Article in English | MEDLINE | ID: mdl-34263445

ABSTRACT

Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.


Subject(s)
CRISPR-Cas Systems , Crops, Agricultural/genetics , Edible Grain/genetics , Gene Editing , Genome, Plant , Plant Breeding/methods , Plants, Genetically Modified/genetics , Gene Targeting
2.
Funct Plant Biol ; 47(3): 239-249, 2020 02.
Article in English | MEDLINE | ID: mdl-32045562

ABSTRACT

Infection of viruses in plants often modifies plant responses to biotic and abiotic stresses. In the present study we examined the effects of Rice tungro spherical virus (RTSV) infection on drought response in rice. RTSV infection delayed the onset of leaf rolling by 1-2 days. During the delay in drought response, plants infected with RTSV showed higher stomatal conductance and less negative leaf water potential under drought than those of uninfected plants, indicating that RTSV-infected leaves were more hydrated. Other growth and physiological traits of plants under drought were not altered by infection with RTSV. An expression analysis of genes for drought response-related transcription factors showed that the expression of OsNAC6 and OsDREB2a was less activated by drought in RTSV-infected plants than in uninfected plants, further suggesting improved water status of the plants due to RTSV infection. RTSV accumulated more in plants under drought than in well-watered plants, indicating the increased susceptibility of rice plants to RTSV infection by drought. Collectively, these results indicated that infection with RTSV can transiently mitigate the influence of drought stress on rice plants by increasing leaf hydration, while drought increased the susceptibility of rice plants to RTSV.


Subject(s)
Infections , Oryza , Waikavirus , Droughts , Humans , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...